skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Redefining the Tonto Group of Grand Canyon and recalibrating the Cambrian time scale
Abstract We applied tandem U-Pb dating of detrital zircon (DZ) to redefine the Tonto Group in the Grand Canyon region (Arizona, USA) and to modify the Cambrian time scale. Maximum depositional ages (MDAs) based upon youngest isotope-dilution DZ ages for the Tapeats Sandstone are ≤508.19 ± 0.39 Ma in eastern Grand Canyon, ≤507.68 ± 0.36 Ma in Nevada, and ≤506.64 ± 0.32 Ma in central Arizona. The Sixtymile Formation, locally conformable below the Tapeats Sandstone, has a similar MDA (≤508.6 ± 0.8 Ma) and is here added to the Tonto Group. We combined these precise MDAs with biostratigraphy of trilobite biozones in the Tonto Group. The Tapeats Sandstone is ca. 508–507 Ma; the Bright Angel Formation contains Olenellus, Glossopleura, and Ehmaniella biozones and is ca. 507–502 Ma; and the Muav Formation contains Bolaspidella and Cedaria biozones and is ca. 502–499 Ma. The Frenchman Mountain Dolostone is conformable above the Muav Formation and part of the same transgression; it replaces McKee’s Undifferentiated Dolomite as part of the Tonto Group; it contains the Crepicephalus Biozone and is 498–497 Ma. The Tonto Group thickens east to west, from 250 m to 830 m, due to ∼300 m of westward thickening of carbonates plus ∼300 m of eastward beveling beneath the sub-Devonian disconformity. The trilobite genus Olenellus occurs in western but not eastern Grand Canyon; it has its last appearance datum (LAD) in the Bright Angel Formation ∼45 m above the ≤507.68 Ma horizon. This extinction event is estimated to be ca. 506.5 Ma and is two biozones below the Series 2–Miaolingian Epoch boundary, which we estimate to be ca. 506 Ma. Continued tandem dating of detrital grains in stratigraphic context, combined with trilobite biostratigraphy, offers rich potential to recalibrate the tempo and dynamics of Cambrian Earth systems.  more » « less
Award ID(s):
1954583 1955078
PAR ID:
10283415
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
48
Issue:
5
ISSN:
0091-7613
Page Range / eLocation ID:
425 to 430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Trilobites appeared and diversified rapidly in the Cambrian, but it is debated as to whether their radiations and extinctions were globally synchronous or geographically restricted and diachronous. The end of the early Cambrian is a classic example—it has traditionally been defined by the extinction of olenellid and redlichiid trilobites and the appearance of paradoxidid trilobites. Here we integrate the global biostratigraphy of these three trilobite groups with high-precision tuff and tandem detrital zircon U-Pb age constraints to falsify prior models for global synchronicity of these events. For the first time, we demonstrate that olenellid trilobites in Laurentia went extinct at least 3 Ma after the first appearance of paradoxidids in Avalonia and West Gondwana (ca. 509 Ma). They also disappeared before the extinction of redlichiids and prior to the base of the Miaolingian at ca. 506 Ma in South China. This indicates that these three trilobite groups (paradoxidids, olenellids, and redlichiids) and their associated biotas overlapped in time for nearly 40% of Cambrian Epoch 2, Age 4. Implications of this chronological overlap are: (1) trilobite transitions were progressive and geographically mediated rather than globally synchronous; and (2) paleontological databases underestimate the diversity of the early Cambrian. This ∼3 Ma diachroneity, at a critical time in the early evolution of animals, also impacts chemostratigraphic and paleoclimatic data sets that are tied to trilobite biostratigraphy and that collectively underpin our understanding of the Cambrian Earth system. 
    more » « less
  2. null (Ed.)
    Abstract The provocative hypothesis that the Shinumo Sandstone in the depths of Grand Canyon was the source for clasts of orthoquartzite in conglomerate of the Sespe Formation of coastal California, if verified, would indicate that a major river system flowed southwest from the Colorado Plateau to the Pacific Ocean prior to opening of the Gulf of California, and would imply that Grand Canyon had been carved to within a few hundred meters of its modern depth at the time of this drainage connection. The proposed Eocene Shinumo-Sespe connection, however, is not supported by detrital zircon nor paleomagnetic-inclination data and is refuted by thermochronology that shows that the Shinumo Sandstone of eastern Grand Canyon was >60 °C (∼1.8 km deep) and hence not incised at this time. A proposed 20 Ma (Miocene) Shinumo-Sespe drainage connection based on clasts in the Sespe Formation is also refuted. We point out numerous caveats and non-unique interpretations of paleomagnetic data from clasts. Further, our detrital zircon analysis requires diverse sources for Sespe clasts, with better statistical matches for the four “most-Shinumo-like” Sespe clasts with quartzites of the Big Bear Group and Ontario Ridge metasedimentary succession of the Transverse Ranges, Horse Thief Springs Formation from Death Valley, and Troy Quartzite of central Arizona. Diverse thermochronologic and geologic data also refute a Miocene river pathway through western Grand Canyon and Grand Wash trough. Thus, Sespe clasts do not require a drainage connection from Grand Canyon or the Colorado Plateau and provide no constraints for the history of carving of Grand Canyon. Instead, abundant evidence refutes the “old” (70–17 Ma) Grand Canyon models and supports a <6 Ma Grand Canyon. 
    more » « less
  3. Abstract Competing hypotheses attribute the regional loss of 1.2–1.0 Ga detrital zircon from the Cambrian Sauk Sequence in southwestern North America to differing tectonic controls on surface topography. We test three hypotheses with source‐to‐sink detrital zircon provenance analysis via tandem in situ and isotope dilution U–Pb geochronology paired with geochemical and Hf‐isotope tracers. Our data indicate that the lower‐to‐middle Sixtymile Formation in Grand Canyon was derived from ca. 1.1 Ga rocks of the Llano Uplift and the ca. 539–523 Ma Wichita igneous province, approximately 1400 km away. In contrast, new U–Pb geochronology links the upper Sixtymile and Tapeats formations to the 513–510 Ma Florida Mountains intrusive complex, southern New Mexico, and proximal 1.4 and 1.7 Ga basement approximately 650 km away. We attribute a regional provenance shift to plume–lithosphere interactions on the Iapetan margin, tectonism along ‘leaky’ intracratonic transverse fault zones and the rift‐to‐drift transition on the Cordilleran margin. 
    more » « less
  4. Abstract Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; southwestern United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposition with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this provenance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local basement uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and temporal patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrography, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth elemental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in western Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anomalously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochemistry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identification of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wanakah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin suggests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT. 
    more » « less
  5. null (Ed.)
    Abstract Orthoquartzite detrital source regions in the Cordilleran interior yield clast populations with distinct spectra of paleomagnetic inclinations and detrital zircon ages that can be used to trace the provenance of gravels deposited along the western margin of the Cordilleran orogen. An inventory of characteristic remnant magnetizations (CRMs) from >700 sample cores from orthoquartzite source regions defines a low-inclination population of Neoproterozoic–Paleozoic age in the Mojave Desert–Death Valley region (and in correlative strata in Sonora, Mexico) and a moderate- to high-inclination population in the 1.1 Ga Shinumo Formation in eastern Grand Canyon. Detrital zircon ages can be used to distinguish Paleoproterozoic to mid-Mesoproterozoic (1.84–1.20 Ga) clasts derived from the central Arizona highlands region from clasts derived from younger sources that contain late Mesoproterozoic zircons (1.20–1.00 Ga). Characteristic paleomagnetic magnetizations were measured in 44 densely cemented orthoquartzite clasts, sampled from lower Miocene portions of the Sespe Formation in the Santa Monica and Santa Ana mountains and from a middle Eocene section in Simi Valley. Miocene Sespe clast inclinations define a bimodal population with modes near 15° and 45°. Eight samples from the steeper Miocene mode for which detrital zircon spectra were obtained all have spectra with peaks at 1.2, 1.4, and 1.7 Ga. One contains Paleozoic and Mesozoic peaks and is probably Jurassic. The remaining seven define a population of clasts with the distinctive combination of moderate to high inclination and a cosmopolitan age spectrum with abundant grains younger than 1.2 Ga. The moderate to high inclinations rule out a Mojave Desert–Death Valley or Sonoran region source population, and the cosmopolitan detrital zircon spectra rule out a central Arizona highlands source population. The Shinumo Formation, presently exposed only within a few hundred meters elevation of the bottom of eastern Grand Canyon, thus remains the only plausible, known source for the moderate- to high-inclination clast population. If so, then the Upper Granite Gorge of the eastern Grand Canyon had been eroded to within a few hundred meters of its current depth by early Miocene time (ca. 20 Ma). Such an unroofing event in the eastern Grand Canyon region is independently confirmed by (U-Th)/He thermochronology. Inclusion of the eastern Grand Canyon region in the Sespe drainage system is also independently supported by detrital zircon age spectra of Sespe sandstones. Collectively, these data define a mid-Tertiary, SW-flowing “Arizona River” drainage system between the rapidly eroding eastern Grand Canyon region and coastal California. 
    more » « less