Abstract Spacious M4L6tetrahedra can act as catalytic inhibitors for base‐mediated reactions. Upon adding only 5 % of a self‐assembled Fe4L6cage complex, the conversion of the conjugate addition between ethylcyanoacetate and β‐nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4L6cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4L6hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2L3helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets.
more »
« less
Competing pathways for photoremovable protecting groups: the effects of solvent, oxygen and encapsulation
Extending the applications of Photoremovable Protecting Groups (PPGs) to “cage” phenols has generally met with unusually complex PPG byproducts. In this study, we demonstrate that the p –hydroxyphenacyl (pHP) cage for both simple and complex phenolics, including tyrosine, dispenses free phenols. With the simpler unsubstituted phenols, the reaction is governed by their Brønsted Leaving Group ability. On the other hand, the byproducts of the cage vary with these phenols. For the more acidic phenols the cage byproduct follows the Favorskii rearrangement to form p -hydroxyphenylacetic acid whereas for the weaker phenols other reactions such as reduction and hydrolysis begin to emerge. When the photolysis is conducted in octa acid (OA) containers, non-Favorskii, unrearranged fragments of the cage and other byproducts arise.
more »
« less
- Award ID(s):
- 1807729
- PAR ID:
- 10283666
- Date Published:
- Journal Name:
- Photochemical & Photobiological Sciences
- Volume:
- 19
- Issue:
- 10
- ISSN:
- 1474-905X
- Page Range / eLocation ID:
- 1364 to 1372
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n) structure is reported. Following optical and electrochemical characterization of the open-cage fullerenes 2a–c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices obtained from 2a–b exhibit competitive power conversion efficiencies (PCEs) and improved open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of 2a–b and the conduction band of the perovskite.more » « less
-
Bose, Arpita (Ed.)ABSTRACT Efforts toward microbial conversion of lignin to value-added products face many challenges because lignin’s methoxylated aromatic monomers release toxic C1byproducts such as formaldehyde. The ability to grow on methoxylated aromatic acids (e.g., vanillic acid) has been identified in certain clades of methylotrophs, bacteria characterized by their unique ability to tolerate and metabolize high concentrations of formaldehyde. Here, we use a phyllosphere methylotroph isolate,Methylobacterium extorquensSLI 505, as a model to identify the fate of formaldehyde during methylotrophic growth on vanillic acid.M. extorquensSLI 505 displays concentration-dependent growth phenotypes on vanillic acid without concomitant formaldehyde accumulation. We conclude thatM. extorquensSLI 505 overcomes metabolic bottlenecks from simultaneous assimilation of multicarbon and C1intermediates by allocating formaldehyde toward dissimilation and assimilating the ring carbons of vanillic acid heterotrophically. We correlate this strategy with maximization of bioenergetic yields and demonstrate that formaldehyde dissimilation for energy generation rather than formaldehyde detoxification is advantageous for growth on aromatic acids.M. extorquensSLI 505 also exhibits catabolite repression during growth on methanol and low concentrations of vanillic acid, but no diauxic patterns during growth on methanol and high concentrations of vanillic acid. Results from this study outline metabolic strategies employed byM. extorquensSLI 505 for growth on a complex single substrate that generates both C1and multicarbon intermediates and emphasizes the robustness ofM. extorquensfor biotechnological applications for lignin valorization.IMPORTANCELignin, one of the most abundant and renewable carbon sources on Earth, is a promising alternative to non-renewable fossil fuels used to produce petrochemicals. Degradation of lignin releases toxic C1byproducts such as formaldehyde, and thus most microorganisms are not suitable for biorefining lignin. By contrast,Methylobacterium extorquensSLI 505 is capable of growth on high concentrations of aromatic acids without concomitant formaldehyde accumulation. In addition, we show that the growth ofM. extorquensSLI 505 on aromatic acids is coupled to the production of the bioplastic, polyhydroxybutyrate. Aromatic acids serve as a model by which to understand howM. extorquensSLI 505 balances methylotrophic and heterotrophic pathways during growth to provide strategies for growth optimization when using complex substrates in both ecological and industrial fermentation applications.more » « less
-
Abstract Conjugated polymers have received significant attention as potentially lightweight and highly tailorable alternatives to inorganic semiconductors, but their synthesis is often complex, produces toxic byproducts, and they are not typically designed to be degradable or recyclable. These drawbacks necessitate dedicated efforts to discover materials with design motifs that enable targeted and efficient degradation of conjugated polymers. In this vein, the synthetic simplicity of 1,4‐dihydropyrrolo[3,2‐b]pyrroles (DHPPs) is exploited to access azomethine‐containing copolymers via a benign acid‐catalyzed polycondensation protocol. Polymerizations involve reacting a dialdehyde‐functionalized dihydropyrrolopyrrole withp‐phenylenediamine as the comonomer usingp‐toluenesulfonic acid as a catalyst. The inherent dynamic equilibrium of the azomethine bonds subsequently enabled the degradation of the polymers in solution in the presence of acid. Degradation of the polymers is monitored via NMR, UV‐vis absorbance, and fluorescence spectroscopies, and the polymers are shown to be fully degradable. Notably, while absorbance measurements reveal a continued shift to higher energies with extended exposure to acid, fluorescence measurements show a substantial increase in the fluorescence response upon degradation. Results from this study encourage the continued development of environmentally‐conscious polymerizations to attain polymeric materials with useful properties while simultaneously creating polymers with structural handles for end‐of‐life management or/and recyclability.more » « less
-
Abstract A facile method to oxidatively trimerize phenols using a catalytic aerobic copper system is described. The mechanism of this transformation was probed, yielding insight that enabled cross‐coupling trimerizations. With this method, the natural product pyrolaside B was synthesized for the first time. The key strategy used for this novel synthesis is the facile one‐step construction of a spiroketal trimer intermediate, which can be selectively reduced to give the natural product framework without recourse to stepwise Ullmann‐ and Suzuki‐type couplings. As a result, pyrolaside B can be obtained expeditiously in five steps and 16 % overall yield. Three other analogues were synthesized, thus highlighting the utility of the method, which provides new accessibility to this area of chemical space. A novel xanthene was also synthesized through controlled Lewis acid promoted rearrangement of a spiroketal trimer.more » « less
An official website of the United States government

