skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials
The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.  more » « less
Award ID(s):
1715680
PAR ID:
10283765
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
European Journal of Applied Mathematics
ISSN:
0956-7925
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper presents the Eshelby’s tensor of a polygonal inclusion with a polynomial eigenstrain, which can provide an elastic solution to an arbitrary, convex inclusion with a continuously distributed eigenstrain by the Taylor series approximation. The Eshelby’s tensor for plane strain problem is derived from the fundamental solution of isotropic Green’s function with the Hadmard regularization, which is composed of the integrals of the derivatives of the harmonic and biharmonic potentials over the source domain. Using the Green’s theorem, they are converted to two line (contour) integrals over the polygonal cross section. This paper evaluates them by direct analytical integrals. Following Mura’s work, this paper formulates the method to derive linear, quadratic, and higher order of the Eshelby’s tensor in the polynomial form for arbitrary, convex polygonal shapes of inclusions. Numerical case studies were performed to verify the analytic results with the original Eshelby’s solution for a uniform eigenstrain in an ellipsoidal domain. It is of significance to consider higher order terms of eigenstrain for the polygon-shape inclusion problem because the eigenstrain distribution is generally non-uniform when Eshelby’s equivalent inclusion method is used. The stress disturbance due to a triangle particle in an infinite domain is demonstrated by comparison with the results of the finite element method (FEM). The present solution paves the way to accurately simulate the particle-particle, partial-boundary interactions of polygon-shape particles. 
    more » « less
  2. Abstract Finite Cartesian products of operators play a central role in monotone operator theory and its applications. Extending such products to arbitrary families of operators acting on different Hilbert spaces is an open problem, which we address by introducing the Hilbert direct integral of a family of monotone operators. The properties of this construct are studied, and conditions under which the direct integral inherits the properties of the factor operators are provided. The question of determining whether the Hilbert direct integral of a family of subdifferentials of convex functions is itself a subdifferential leads us to introducing the Hilbert direct integral of a family of functions. We establish explicit expressions for evaluating the Legendre conjugate, subdifferential, recession function, Moreau envelope, and proximity operator of such integrals. Next, we propose a duality framework for monotone inclusion problems involving integrals of linearly composed monotone operators and show its pertinence toward the development of numerical solution methods. Applications to inclusion and variational problems are discussed. 
    more » « less
  3. What learning algorithms can be run directly on compressively-sensed data? In this work, we consider the question of accurately and efficiently computing low-rank matrix or tensor factorizations given data compressed via random projections. We examine the approach of first performing factorization in the compressed domain, and then reconstructing the original high-dimensional factors from the recovered (compressed) factors. In both the matrix and tensor settings, we establish conditions under which this natural approach will provably recover the original factors. While it is well-known that random projections preserve a number of geometric properties of a dataset, our work can be viewed as showing that they can also preserve certain solutions of non-convex, NP- Hard problems like non-negative matrix factorization. We support these theoretical results with experiments on synthetic data and demonstrate the practical applicability of compressed factorization on real-world gene expression and EEG time series datasets. 
    more » « less
  4. A bstract The Brownian loop soup (BLS) is a conformally invariant statistical ensemble of random loops in two dimensions characterized by an intensity λ > 0. Recently, we constructed families of operators in the BLS and showed that they transform as conformal primary operators. In this paper we provide an explicit expression for the BLS stress-energy tensor and compute its operator product expansion with other operators. Our results are consistent with the conformal Ward identities and our previous result that the central charge is c = 2 λ . In the case of domains with boundary we identify a boundary operator that has properties consistent with the boundary stress-energy tensor. We show that this operator generates local deformations of the boundary and that it is related to a boundary operator that induces a Brownian excursion starting or ending at its insertion point. 
    more » « less
  5. null (Ed.)
    Abstract The paper extends the recent work (JAM, 88, 061002, 2021) of the Eshelby's tensors for polynomial eigenstrains from a two dimensional (2D) to three dimensional (3D) domain, which provides the solution to the elastic field with continuously distributed eigenstrain on a polyhedral inclusion approximated by the Taylor series of polynomials. Similarly, the polynomial eigenstrain is expanded at the centroid of the polyhedral inclusion with uniform, linear and quadratic order terms, which provides tailorable accuracy of the elastic solutions of polyhedral inhomogeneity by using Eshelby's equivalent inclusion method. However, for both 2D and 3D cases, the stress distribution in the inhomogeneity exhibits a certain discrepancy from the finite element results at the neighborhood of the vertices due to the singularity of Eshelby's tensors, which makes it inaccurate to use the Taylor series of polynomials at the centroid to catch the eigenstrain at the vertices. This paper formulates the domain discretization with tetrahedral elements to accurately solve for eigenstrain distribution and predict the stress field. With the eigenstrain determined at each node, the elastic field can be predicted with the closed-form domain integral of Green's function. The parametric analysis shows the performance difference between the polynomial eigenstrain by the Taylor expansion at the centroid and the 𝐶0 continuous eigenstrain by particle discretization. Because the stress singularity is evaluated by the analytical form of the Eshelby's tensor, the elastic analysis is robust, stable and efficient. 
    more » « less