skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials
The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.  more » « less
Award ID(s):
1715680
PAR ID:
10283765
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
European Journal of Applied Mathematics
ISSN:
0956-7925
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper presents the Eshelby’s tensor of a polygonal inclusion with a polynomial eigenstrain, which can provide an elastic solution to an arbitrary, convex inclusion with a continuously distributed eigenstrain by the Taylor series approximation. The Eshelby’s tensor for plane strain problem is derived from the fundamental solution of isotropic Green’s function with the Hadmard regularization, which is composed of the integrals of the derivatives of the harmonic and biharmonic potentials over the source domain. Using the Green’s theorem, they are converted to two line (contour) integrals over the polygonal cross section. This paper evaluates them by direct analytical integrals. Following Mura’s work, this paper formulates the method to derive linear, quadratic, and higher order of the Eshelby’s tensor in the polynomial form for arbitrary, convex polygonal shapes of inclusions. Numerical case studies were performed to verify the analytic results with the original Eshelby’s solution for a uniform eigenstrain in an ellipsoidal domain. It is of significance to consider higher order terms of eigenstrain for the polygon-shape inclusion problem because the eigenstrain distribution is generally non-uniform when Eshelby’s equivalent inclusion method is used. The stress disturbance due to a triangle particle in an infinite domain is demonstrated by comparison with the results of the finite element method (FEM). The present solution paves the way to accurately simulate the particle-particle, partial-boundary interactions of polygon-shape particles. 
    more » « less
  2. We analyze the spectrum of the Neumann-Poincaré (NP) operator for a doubly connected domain lying between two level curves defined by a conformal mapping, where the inner boundary of the domain is of general shape. The analysis relies on an infinite-matrix representation of the NP operator involving the Grunsky coefficients of the conformal mapping and an application of the Gershgorin circle theorem. As the thickness of the domain shrinks to zero, the spectrum of the doubly connected domain approaches the interval [−1/2, 1/2] in the Hausdorff distance and the density of eigenvalues approaches that of a thin circular annulus. 
    more » « less
  3. Eshelby’s equivalent inclusion method (EIM) has been formulated to solve harmonic heat transfer problems of an infinite or semi-infinite domain containing an inclusion or inhomogeneity. For the inclusion problem, the heat equation is reduced to a modified Helmholtz’s equation in the frequency domain through the Fourier transform, and the harmonic Eshelby’s tensor is derived from the domain integrals of the corresponding Green’s function in the form of Helmholtz’s potential. Using the convolution property of the Fourier space, Helmholtz’s potential with polynomial-form source densities is integrated over an ellipsoidal inclusion, which is reduced to a one-dimensional integral for spheroids and an explicit, exact expression for spheres. The material mismatch in the inhomogeneity problem is simulated by continuously distributed eigen-fields, namely, the eigen-temperature-gradient (ETG) and eigen-heat-source (EHS) for thermal conductivity and specific heat, respectively. The proposed EIM formulation is verified by the conventional boundary integral method with the harmonic Green’s function and multi-domain interfacial continuity, and the accuracy and efficacy of the solution are discussed under different material and load settings. 
    more » « less
  4. Abstract Finite Cartesian products of operators play a central role in monotone operator theory and its applications. Extending such products to arbitrary families of operators acting on different Hilbert spaces is an open problem, which we address by introducing the Hilbert direct integral of a family of monotone operators. The properties of this construct are studied, and conditions under which the direct integral inherits the properties of the factor operators are provided. The question of determining whether the Hilbert direct integral of a family of subdifferentials of convex functions is itself a subdifferential leads us to introducing the Hilbert direct integral of a family of functions. We establish explicit expressions for evaluating the Legendre conjugate, subdifferential, recession function, Moreau envelope, and proximity operator of such integrals. Next, we propose a duality framework for monotone inclusion problems involving integrals of linearly composed monotone operators and show its pertinence toward the development of numerical solution methods. Applications to inclusion and variational problems are discussed. 
    more » « less
  5. What learning algorithms can be run directly on compressively-sensed data? In this work, we consider the question of accurately and efficiently computing low-rank matrix or tensor factorizations given data compressed via random projections. We examine the approach of first performing factorization in the compressed domain, and then reconstructing the original high-dimensional factors from the recovered (compressed) factors. In both the matrix and tensor settings, we establish conditions under which this natural approach will provably recover the original factors. While it is well-known that random projections preserve a number of geometric properties of a dataset, our work can be viewed as showing that they can also preserve certain solutions of non-convex, NP- Hard problems like non-negative matrix factorization. We support these theoretical results with experiments on synthetic data and demonstrate the practical applicability of compressed factorization on real-world gene expression and EEG time series datasets. 
    more » « less