skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Role-Playing Computer Ethics: Designing and Evaluating the Privacy by Design (PbD) Simulation
Abstract There is growing consensus that teaching computer ethics is important, but there is little consensus on how to do so. One unmet challenge is increasing the capacity of computing students to make decisions about the ethical challenges embedded in their technical work. This paper reports on the design, testing, and evaluation of an educational simulation to meet this challenge. The privacy by design simulation enables more relevant and effective computer ethics education by letting students experience and make decisions about common ethical challenges encountered in real-world work environments. This paper describes the process of incorporating empirical observations of ethical questions in computing into an online simulation and an in-person board game. We employed the Values at Play framework to transform empirical observations of design into a playable educational experience. First, we conducted qualitative research to discover when and how values levers—practices that encourage values discussions during technology development—occur during the design of new mobile applications. We then translated these findings into gameplay elements, including the goals, roles, and elements of surprise incorporated into a simulation. We ran the online simulation in five undergraduate computer and information science classes. Based on this experience, we created a more accessible board game, which we tested in two undergraduate classes and two professional workshops. We evaluated the effectiveness of both the online simulation and the board game using two methods: a pre/post-test of moral sensitivity based on the Defining Issues Test, and a questionnaire evaluating student experience. We found that converting real-world ethical challenges into a playable simulation increased student’s reported interest in ethical issues in technology, and that students identified the role-playing activity as relevant to their technical coursework. This demonstrates that roleplaying can emphasize ethical decision-making as a relevant component of technical work.  more » « less
Award ID(s):
1704369
NSF-PAR ID:
10283937
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science and Engineering Ethics
Volume:
26
Issue:
6
ISSN:
1353-3452
Page Range / eLocation ID:
2911 to 2926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In conjunction with the increasing ubiquity of technology, computing educators have identified the need for pedagogical engagement with ethical awareness and moral reasoning. Typical approaches to incorporating ethics in computing curricula have focused primarily on abstract methods, principles, or paradigms of ethical reasoning, with relatively little focus on examining and developing students’ pragmatic awareness of ethics as grounded in their everyday work practices. In this paper, we identify and describe computing students’ negotiation of values as they engage in authentic design problems through a lab protocol study. We collected data from four groups of three students each, with each group including participants from either undergraduate User Experience Design students, Industrial Engineering students, or a mix of both. We used a thematic analysis approach to identify the roles that students took on to address the design prompt. Through our analysis, we found that the students took on a variety of “dark” roles that resulted in manipulation of the user and prioritization of stakeholder needs over user needs, with a focus either on building solutions or building rationale for design decisions. We found these roles to actively propagate through design discourses, impacting other designers in ways that frequently reinforced unethical decision making. Even when students were aware of ethical concerns based on their educational training, this awareness did not consistently result in ethically-sound decisions. These findings indicate the need for additional ethical supports to inform everyday computing practice, including means of actively identifying and balancing negative societal impacts of design decisions. The roles we have identified may productively support the development of pragmatically-focused ethical training in computing education, while adding more precision to future analysis of computing student discourses and outputs. 
    more » « less
  2. Scholars and public figures have called for improved ethics and social responsibility education in computer science degree programs in order to better address consequential technological issues in society. Indeed, rising public concern about computing technologies arguably represents an existential threat to the credibility of the computing profession itself. Despite these increasing calls, relatively little is known about the ethical development and beliefs of computer science students, especially compared to other science and engineering students. Gaps in scholarly research make it difficult to effectively design and evaluate ethics education interventions in computer science. Therefore, there is a pressing need for additional empirical study regarding the development of ethical attitudes in computer science students. Influenced by the Professional Social Responsibility Development Model, this study explores personal and professional social responsibility attitudes among undergraduate computing students. Using survey results from a sample of 982 students (including 184 computing majors) who graduated from a large engineering institution between 2017 and 2021, we compare social responsibility attitudes cross-sectionally among computer science students, engineering students, other STEM students, and non-STEM students. Study findings indicate computer science students have statistically significantly lower social responsibility attitudes than their peers in other science and engineering disciplines. In light of growing ethical concerns about the computing profession, this study provides evidence about extant challenges in computing education and buttresses calls for more effective development of social responsibility in computing students. We discuss implications for undergraduate computing programs, ethics education, and opportunities for future research. 
    more » « less
  3. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  4. null (Ed.)
    Providing learners with authentic ethical situations in a formal educational environment can be challenging. While we encounter ethical situations daily (e.g., how we treat those around us; temptation to illegally use copyrighted content), some types of ethical situations are high-risk, rare, and/or embedded into contexts that learners don’t typically inhabit. For example, learners studying user experience design may someday be pressured by a boss to implement “dark UX” patterns to increase sign-ups by deceiving users. Learners can benefit from the ability to practice recognizing unethical behavior, making decisions in ethically complex contexts, and learning from their responses. A new genre of highly realistic educational simulations, called Playable Case Studies, can provide a context in which players can experience ethical conundrums in a safe environment, helping learn from mistakes and successes. In order to make the experience authentic and not obviously about ethics, it makes sense to embed ethical experiences into simulations focused on other topics in which ethical issues arise. An example of this approach is described, wherein an ethical situation is embedded within a cybersecurity Playable Case Study called Cybermatics. Many questions remain about how to design and evaluate such experiences in ways that lead to effective learning. 
    more » « less
  5. Ethics has long been recognized as crucial to responsible engineering, but the increasingly globalized environments present challenges to effective engineering ethics training. This paper is part of a larger research project that aims to examine the effects of culture and education on ethics training in undergraduate engineering students at universities in the United States, China, and the Netherlands. We are interested in how students’ curricular and extra-curricular (e.g., internships, service projects) experiences and training impact their ethical reasoning and moral dispositions, and how this differs cross-culturally. To understand this, we are conducting mixed methods research longitudinally over four years to engineering students at our participating universities to gauge their moral dispositions and ethical reasoning skills and to measure any change in these. This work-in-progress paper, however, is not about the direct outcomes of this research project. Rather, it critically examines our own practices and methods in doing this research. We begin the paper by briefly introducing the larger research project and motivating the use of comparative, multi-institutional case studies as necessary for contextualizing, complementing, and interpreting quantitative data on ethical reasoning and moral dispositions. Because the conditions related to engineering ethics education differ widely per participating institution for institutional (and also likely cultural) reasons, interpreting and analyzing quantitative survey data will require understanding contextual conditions of education at each institution. Comparative case studies can supply missing contextual information to provide a more complete picture of the engineering ethics educational contexts, strategies, and practices at each of the participating universities. However, in considering how to design and conduct these case studies, we realized we were operating under certain assumptions such as ethics in engineering as separate (and separable from) the “real,” or technical engineering curriculum. These assumptions have been widely problematized in engineering ethics education (Cech, 2014; Tormey et al. 2015; Polmear et al. 2019); they are assumptions that we in our teaching and research attempt to dispel. Our paper considers (and invites discussion on) the broader implications of methodological design in conducting cross-cultural multi-sited case studies in engineering ethics education research. It explores models for designing and conducting our case studies so as not to reproduce pernicious ideas about social and ethical issues in engineering as subsidiary “interventions” in the “actual,” (i.e., technical) curriculum. More generally we discuss how engineering ethics education research methods can be harnessed to overcome this established division. 
    more » « less