- Award ID(s):
- 1704369
- Publication Date:
- NSF-PAR ID:
- 10283954
- Journal Name:
- ACM Conference on Fairness, Accountability,and Transparency (FAccT ’21)
- Sponsoring Org:
- National Science Foundation
More Like this
-
Algorithmic impact assessments (AIA) are increasingly being proposed as a mechanism for algorithmic accountability. These assessments are seen as potentially useful for anticipating, avoiding, and mitigating the negative consequences of algorithmic decision-making systems (ADS). At the same time, what an AIA would entail remains under-specified. While promising, AIAs raise as many questions as they answer. Choices about the methods, scope, and purpose of impact assessments structure the possible governance outcomes. Decisions about what type of effects count as an impact, when impacts are assessed, whose interests are considered, who is invited to participate, who conducts the assessment, the public availability of the assessment, and what the outputs of the assessment might be all shape the forms of accountability that AIA proponents seek to encourage. These considerations remain open, and will determine whether and how AIAs can function as a viable governance mechanism in the broader algorithmic accountability toolkit, especially with regard to furthering the public interest. Because AlAs are still an incipient governance strategy, approaching them as social constructions that do not require a single or universal approach offers a chance to produce interventions that emerge from careful deliberation.
-
A quiet revolution is afoot in the field of law. Technical systems employing algorithms are shaping and displacing professional decision making, and they are disrupting and restructuring relationships between law firms, lawyers, and clients. Decision-support systems marketed to legal professionals to support e-discovery—generally referred to as “technology assisted review” (TAR)—increasingly rely on “predictive coding”: machine-learning techniques to classify and predict which of the voluminous electronic documents subject to litigation should be withheld or produced to the opposing side. These systems and the companies offering them are reshaping relationships between lawyers and clients, introducing new kinds of professionals into legal practice, altering the discovery process, and shaping how lawyers construct knowledge about their cases and professional obligations. In the midst of these shifting relationships—and the ways in which these systems are shaping the construction and presentation of knowledge—lawyers are grappling with their professional obligations, ethical duties, and what it means for the future of legal practice. Through in-depth, semi-structured interviews of experts in the e-discovery technology space—the technology company representatives who develop and sell such systems to law firms and the legal professionals who decide whether and how to use them in practice—we shed light on the organizational structures, professional rulesmore »
-
Assessing the ecological and economic impacts of non-native species is crucial to providing managers and policymakers with the information necessary to respond effectively. Most non-native species have minimal impacts on the environment in which they are introduced, but a small fraction are highly deleterious. The definition of ‘damaging’ or ‘high-impact’ varies based on the factors determined to be valuable by an individual or group, but interpretations of whether non-native species meet particular definitions can be influenced by the interpreter’s bias or level of expertise, or lack of group consensus. Uncertainty or disagreement about an impact classification may delay or otherwise adversely affect policymaking on management strategies. One way to prevent these issues would be to have a detailed, nine-point impact scale that would leave little room for interpretation and then divide the scale into agreed upon categories, such as low, medium, and high impact. Following a previously conducted, exhaustive search regarding non-native, conifer-specialist insects, the authors independently read the same sources and scored the impact of 41 conifer-specialist insects to determine if any variation among assessors existed when using a detailed impact scale. Each of the authors, who were selected to participate in the working group associated with this studymore »
-
Reproductive coercion (RC) is a type of intimate partner violence (IPV) characterized by partner interference with contraception or reproductive decision-making. Despite sexual minority people’s vulnerability to other forms of IPV, limited research has examined reproductive coercion in this population. Research on behavioral health impacts of reproductive coercion is also lacking, especially for sexual minorities. This study addressed these gaps by examining the occurrence and behavioral health impact of reproductive coercion among emerging adults, including both heterosexual and sexual minority people. In 2020, survey data were collected with emerging adults (aged 18–24 years) at a university in the southeastern United States (N = 387). We conducted bivariate analyses to explore associates of reproductive coercion and logistic regression to identify risk factors. We then conducted linear regression to investigate relationships between reproductive coercion and behavioral health outcomes, in the full sample and in separate models based on sexual attraction. One in 15 sampled students (6.3%) had experienced reproductive coercion. Sexual attraction was a significant risk factor for reproductive coercion, with increased rates among plurisexual (i.e., attracted to people of multiple genders) compared to monosexual students, in both bivariate (χ2(2) = 7.57, p = .023) and regression analyses ( B = 1.25, p = .012). Reproductive coercion was associated with worse behavioral health outcomesmore »
-
The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary data set, such as the U.S. census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest possible set of all possible true disparities that are consistent with the data (and possibly additional assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessmentsmore »