skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Persistent Homology Metrics Reveal Quantum Fluctuations and Reactive Atoms in Path Integral Dynamics
Nuclear quantum effects (NQEs) are known to impact a number of features associated with chemical reactivity and physicochemical properties, particularly for light atoms and at low temperatures. In the imaginary time path integral formalism, each atom is mapped onto a “ring polymer” whose spread is related to the quantum mechanical uncertainty in the particle’s position, i.e., its thermal wavelength. A number of metrics have previously been used to investigate and characterize this spread and explain effects arising from quantum delocalization, zero-point energy, and tunneling. Many of these shape metrics consider just the instantaneous structure of the ring polymers. However, given the significant interest in methods such as centroid molecular dynamics and ring polymer molecular dynamics that link the molecular dynamics of these ring polymers to real time properties, there exists significant opportunity to exploit metrics that also allow for the study of the fluctuations of the atom delocalization in time. Here we consider the ring polymer delocalization from the perspective of computational topology, specifically persistent homology, which describes the 3-dimensional arrangement of point cloud data, (i.e. atomic positions). We employ the Betti sequence probability distribution to define the ensemble of shapes adopted by the ring polymer. The Wasserstein distances of Betti sequences adjacent in time are used to characterize fluctuations in shape, where the Fourier transform and associated principal components provides added information differentiating atoms with different NQEs based on their dynamic properties. We demonstrate this methodology on two representative systems, a glassy system consisting of two atom types with dramatically different de Broglie thermal wavelengths, and ab initio molecular dynamics simulation of an aqueous 4 M HCl solution where the H-atoms are differentiated based on their participation in proton transfer reactions.  more » « less
Award ID(s):
1819229 1661348
PAR ID:
10284028
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Chemistry
Volume:
9
ISSN:
2296-2646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid ( h = 0) to increasingly quantum liquids ( h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., [Formula: see text] decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., [Formula: see text] increases upon compression. (iii) NQE shift both [Formula: see text] and [Formula: see text] toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation. 
    more » « less
  2. Abstract Nuclear quantum effects (NQEs) influence many physical and chemical phenomena, particularly those involving light atoms or occurring at low temperatures. However, their impact has been carefully quantified in few systems-like water-and is rarely considered more broadly. Here we use path-integral molecular dynamics to systematically investigate NQEs on thermophysical properties of 92 organic liquids at ambient conditions. Depending on chemical constitution, we find substantial impact across thermal expansivity, compressibility, dielectric constant, enthalpy of vaporization, and notably molar volume, which shows consistent, positive quantum-classical differences up to 5%; similar, less pronounced trends manifest as isotope effects from deuteration. Using data-driven analysis, we identify three features-molar mass, classical hydrogen density, and classical thermal expansivity-that accurately predict NQEs and facilitate understanding of how characteristics like branching and heteroatom content influence behavior. This work highlights the broad relevance of NQEs in molecular liquids, while also providing a conceptual and practical framework to anticipate their impact. 
    more » « less
  3. DL_POLY Quantum 2.1 is introduced here as a highly modular, sustainable, and scalable general-purpose molecular dynamics (MD) simulation software for large-scale long-time MD simulations of condensed phase and interfacial systems with the essential nuclear quantum effects (NQEs) included. The new release improves upon version 2.0 through the introduction of several emerging real-time path integral (PI) methods, including fast centroid molecular dynamics (f-CMD) and fast quasi-CMD (f-QCMD) methods, as well as our recently introduced hybrid CMD (h-CMD) method for the accurate and efficient simulation of vibrational infrared spectra. Several test cases, including liquid bulk water at 300 K and ice Ih at 150 K, are used to showcase the performance of different implemented PI methods in simulating the infrared spectra at both ambient conditions and low temperatures where NQEs become more apparent. Additionally, using different salt-in-water (i.e., dilute) and water-in-salt (i.e., concentrated) lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) aqueous electrolyte solutions, we demonstrate the applicability of our recently introduced h-CMD method implemented in DL_POLY Quantum 2.1 for the large scale simulation of infrared (IR) spectra of complex heterogeneous systems. We show that h-CMD can overcome the curvature problem of CMD and the artificial broadening of T-RPMD for the accurate simulation of the vibrational spectra of complex, heterogeneous systems with NQEs included. 
    more » « less
  4. We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA–HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description. 
    more » « less
  5. Abstract Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise. 
    more » « less