skip to main content


Title: Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking simulations
Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure–activity relationships (SARs) associated with such lignin-derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERα) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC 50 ) values using an empirical correlation curve created from known EC 50 values and binding affinities of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than ∼−6.0 kcal mol −1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERα. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier substituents on the bridging carbon of lignin-bisphenols, like diethyl or dimethoxy, were shown to weaken binding to ERα. And, as the bio-derivable aromatics maintain major structural similarities to BPA, the resultant polymeric materials should possess comparable/equivalent thermal ( e.g. , glass transition temperatures, thermal decomposition temperatures) and mechanical ( e.g. , tensile strength, modulus) properties to those of polymers derived from BPA. Hence, the SARs established in this work can facilitate the development of sustainable polymers that maintain the performance of existing BPA-based materials while simultaneously reducing estrogenic potential.  more » « less
Award ID(s):
1934887
NSF-PAR ID:
10284095
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
11
Issue:
36
ISSN:
2046-2069
Page Range / eLocation ID:
22149 to 22158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The structural similarities between lignin-derivable bisguaiacols and petroleum-derived bisphenol A/F (BPA/BPF) suggest that bisguaiacols could be ideal biobased alternatives to BPA/BPF in non-isocyanate polyurethane (NIPU) thermosets. Herein, bisguaiacol/bisphenol-derived cyclic carbonates with variations in methoxy content and bridging-carbon substitution were cured with two triamines of different chain lengths, and the impact of these differences on the thermomechanical properties of NIPU networks was examined. The methoxy groups present in the lignin-derivable cyclic carbonates led to thermosets with significantly improved toughness (∼49–59 MJ m −3 ) and elongation at break ( ε b ∼195–278%) vs. the BPA/BPF-based benchmarks (toughness ∼ 26–35 MJ m −3 , ε b ∼ 86–166%). Furthermore, the addition of dimethyl substitution on the bridging carbon resulted in increased yield strength ( σ y ) – from ∼28 MPa for networks with unsubstituted bridging carbons to ∼45 MPa for the dimethyl-substituted materials. These enhancements to mechanical properties were achieved while retaining essential thermoset properties, such as application-relevant moduli and thermal stabilities. Finally, the triamine crosslinkers provided substantial tunability of thermomechanical properties and produced NIPUs that ranged from rigid materials with a high yield strength ( σ y ∼ 65–88 MPa) to flexible and tough networks. Overall, the structure-property relationships presented highlight a promising framework for the design of versatile, bio-derivable, NIPU thermosets. 
    more » « less
  2. Environmental contamination with bisphenol A (BPA), produced via degradation of plastic waste, constitutes a major hazard for human health due to the ability of BPA to bind to estrogen receptors and thereby induce hormonal imbalances. Unfortunately, BPA cannot be degraded to a “safe” material without breaking C–C σ-bonds, and existing methods required to break these bonds employ petroleum-derived chemicals and environmentally-harmful metal ions. Therefore, there is an urgent need to develop new “green” methods to break BPA into monoaryl compounds without the use of such reagents and, ideally, convert those monoaryls into valuable materials that can be productively utilized instead of being discarded as chemical waste. Herein we report a new mechanism by which O , O ′-dimethyl bisphenol A (DMBPA), obtained from BPA-containing plastic via low-temperature recycling, undergoes C–C σ-bond cleavage via thiocracking, a reaction with elemental sulfur at temperatures lower than those used in many thermal plastic recycling techniques ( e.g. , <325 °C). Mechanistic analyses and microstructural characterization of the DMBPA-derived materials produced by thiocracking elucidated multiple subunits comprising monoaryl species. Impressively, analyses of recoverable organics revealed that >95% of DMBPA had been broken down into monoaryl components. Furthermore, the DMBPA–sulfur composite produced by thiocracking (BC90) exhibited compressive strength (∼20 MPa) greater than those of typical Portland cements. Consequently, this new thiocracking method creates the ability to destroy the estrogen receptor-binding components of BPA wastes using greener techniques and, simultaneously, to produce a mechanically-robust composite material that represents a sustainable alternative to Portland cements. 
    more » « less
  3. null (Ed.)
    Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity. 
    more » « less
  4. null (Ed.)
    Fossil fuel refining produces over 70 Mt of excess sulfur annually from for which there is currently no practical use. Recently, methods to convert waste sulfur to recyclable and biodegradable polymers have been delineated. In this report, a commercial bisphenol A (BPA) derivative, 2,2′,5,5′-tetrabromo(bisphenol A) (Br4BPA), is explored as a potential organic monomer for copolymerization with elemental sulfur by RASP (radical-induced aryl halide-sulfur polymerization). Resultant copolymers, BASx (x = wt% sulfur in the monomer feed, screened for values of 80, 85, 90, and 95) were characterized by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Analysis of early stage reaction products and depolymerization products support proposed S–Caryl bond formation and regiochemistry, while fractionation of BASx reveals a sulfur rank of 3–6. Copolymers having less organic cross-linker (5 or 10 wt%) in the monomer feed were thermoplastics, whereas thermosets were accomplished when 15 or 20 wt% of organic cross-linker was used. The flexural strengths of the thermally processable samples (>3.4 MPa and >4.7 for BAS95 and BAS90, respectively) were quite high compared to those of familiar building materials such as portland cement (3.7 MPa). Furthermore, copolymer BAS90 proved quite resistant to degradation by oxidizing organic acid, maintaining its full flexural strength after soaking in 0.5 M H2SO4 for 24 h. BAS90 could also be remelted and recast into shapes over many cycles without any loss of mechanical strength. This study on the effect of monomer ratio on properties of materials prepared by RASP of small molecular aryl halides confirms that highly cross-linked materials with varying physical and mechanical properties can be accessed by this protocol. This work is also an important step towards potentially upcycling BPA from plastic degradation and sulfur from fossil fuel refining. 
    more » « less
  5. null (Ed.)
    Fossil fuels are a cheap and abundant feedstock for polymeric materials that have enabled innumerable quality-of-life improvements. Yet, their declining supply and non-renewable nature have driven the pursuit of bio-based alternatives. Lignin represents the largest natural source of aromatic carbon on the planet, and thus, lignin-derived products have emerged as critical elements in the next generation of polymers. The relative abundance, large concentration of functional handles, and thermal stability of lignin make it an attractive target for bio-based polymers. However, the valorization of lignin to high-performance and cost-competitive materials remains a challenge. In this review, developments in the translation of lignin into value-added macromolecular components are discussed. Strategies to incorporate bulk lignin in polymer blends and composites are introduced with a focus on applications. Furthermore, recent advances in the preparation of higher-value thermoplastics, thermosets, and vitrimers from deconstructed lignin products are highlighted from a synthetic perspective. Finally, key hurdles and future opportunities in lignin valorization are explored. 
    more » « less