skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles
The oxidation of highly toxic arsenite (As(III)) was studied using humic acid-coated magnetite nanoparticles (HA-MNP) as a photosensitizer. Detailed characterization of the HA-MNP was carried out before and after the photoinduced treatment of As(III) species. Upon irradiation of HA-MNP with 350 nm light, a portion of the As(III) species was oxidized to arsenate (As(V)) and was nearly quantitatively removed from the aqueous solution. The separation of As(III) from the aqueous solution is primarily driven by the strong adsorption of As(III) onto the HA-MNP. As(III) removals of 40–90% were achieved within 60 min depending on the amount of HA-MNP. The generation of reactive oxygen species (•OH and 1O2) and the triplet excited state of HA-MNP (3HA-MNP*) was monitored and quantified during HA-MNP photolysis. The results indicate 3HA-MNP* and/or singlet oxygen (1O2) depending on the reaction conditions are responsible for converting As(III) to less toxic As(V). The formation of 3HA-MNP* was quantified using the electron transfer probe 2,4,6-trimethylphenol (TMP). The formation rate of 3HA-MNP* was 8.0 ± 0.6 × 10−9 M s−1 at the TMP concentration of 50 µM and HA-MNP concentration of 1.0 g L−1. The easy preparation, capacity for triplet excited state and singlet oxygen production, and magnetic separation suggest HA-MNP has potential to be a photosensitizer for the remediation of arsenic (As) and other pollutants susceptible to advanced oxidation.  more » « less
Award ID(s):
1710111 1905239
PAR ID:
10284178
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
10
Issue:
8
ISSN:
2079-4991
Page Range / eLocation ID:
1604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) to Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment. 
    more » « less
  2. Abstract. While photooxidants are important in atmospheric condensed phases, there arevery few measurements in particulate matter (PM). Here we measure lightabsorption and the concentrations of three photooxidants – hydroxyl radical(⚫OH), singlet molecular oxygen (1O2*),and oxidizing triplet excited states of organic matter (3C*) –in illuminated aqueous extracts of wintertime particles from Davis,California. 1O2* and 3C*, which are formedfrom photoexcitation of brown carbon (BrC), have not been previously measuredin PM. In the extracts, mass absorption coefficients for dissolved organiccompounds (MACDOC) at 300 nm range between 13 000 and30 000 cm2 (g C)−1 are approximately twice ashigh as previous values in Davis fogs. The average (±1σ)⚫OH steady-state concentration in particle extracts is4.4(±2.3)×10-16 M, which is very similar to previous valuesin fog, cloud, and rain: although our particle extracts are moreconcentrated, the resulting enhancement in the rate of ⚫OHphotoproduction is essentially canceled out by a corresponding enhancement inconcentrations of natural sinks for ⚫OH. In contrast,concentrations of the two oxidants formed primarily from brown carbon (i.e.,1O2* and 3C*) are both enhanced in theparticle extracts compared to Davis fogs, a result of higher concentrationsof dissolved organic carbon and faster rates of light absorption in theextracts. The average 1O2* concentration in the PM extractsis 1.6(±0.5)×10-12 M, 7 times higher than past fogmeasurements, while the average concentration of oxidizing triplets is 1.0(±0.4)×10-13 M, nearly double the average Davis fog value.Additionally, the rates of 1O2* and 3C*photoproduction are both well correlated with the rate of sunlightabsorption. Since we cannot experimentally measure photooxidants under ambient particlewater conditions, we measured the effect of PM dilution on oxidantconcentrations and then extrapolated to ambient particle conditions. As theparticle mass concentration in the extracts increases, measuredconcentrations of ⚫OH remain relatively unchanged,1O2* increases linearly, and 3C* concentrations increase lessthan linearly, likely due to quenching by dissolved organics. Based on ourmeasurements, and accounting for additional sources and sinks that should beimportant under PM conditions, we estimate that [⚫OH] inparticles is somewhat lower than in dilute cloud/fog drops, while [3C*]is 30 to 2000 times higher in PM than in drops, and [1O2*] isenhanced by a factor of roughly 2400 in PM compared to drops. Because ofthese enhancements in 1O2* and 3C* concentrations,the lifetimes of some highly soluble organics appear to be much shorter inparticle liquid water than under foggy/cloudy conditions. Based onextrapolating our measured rates of formation in PM extracts, BrC-derivedsinglet molecular oxygen and triplet excited states are overall the dominantsinks for organic compounds in particle liquid water, with an aggregate rateof reaction for each oxidant that is approximately 200–300 times higherthan the aggregate rate of reactions for organics with ⚫OH. Forindividual, highly soluble reactive organic compounds it appears that1O2* is often the major sink in particle water, which is a newfinding. Triplet excited states are likely also important in the fate ofindividual particulate organics, but assessing this requires additionalmeasurements of triplet interactions with dissolved organic carbon innatural samples. 
    more » « less
  3. Manganese (Mn) oxide solids widely exist in nature, serving as both electron donors and acceptors for a variety of redox reactions. Previous studies have highlighted the adsorption of dissolved organic matter (DOM) on Mn oxides, as well as the reduction of Mn oxides by DOM. Here, we show the underappreciated roles of photolytic reactions of DOM in Mn2+(aq) oxidation and its consequential formation of Mn oxide solids. During the photolysis of DOM, reactive intermediates including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) can be generated. Among them, we found that O2•− was responsible for Mn oxidation. In addition, in the presence of bromide ions (Br−), the photolytic reactions between DOM and Br− formed reactive bromide radicals and facilitated the oxidation of Mn2+(aq) to Mn oxide solids. Moreover, the composition of DOM affected its oxidative capability. When DOM contained more aromatic functional groups, we observed more oxidation of Mn2+ to Mn oxides. These new findings advance our knowledge of natural Mn2+ oxidation and Mn(III/IV) oxide formation, as well as the hitherto overlooked oxidative role of DOM in the oxidation of metal ions in surface water under sunlight illumination. 
    more » « less
  4. Abstract. Fog/cloud drops and aerosol liquid water are important sites for the transformations of atmospheric species, largely through reactions with photoformed oxidants such as the hydroxyl radical (OH), singlet molecular oxygen (1O2∗), and oxidizing triplet excited states of organic matter (3C∗). Despite their importance, few studies have measured these oxidants or their seasonal variations. To address this gap, we collected ambient PM2.5 from Davis, California, over the course of a year and measured photooxidant concentrations and light absorption in dilute aqueous extracts. Mass absorption coefficients (MACs) normalized by dissolved organic carbon range from 0.4–3.8 m2 per gram C at 300 nm. Concentrations of OH, 1O2∗, and 3C∗ in the extracts range from (0.2–4.7) × 10−15 M, (0.7–45) × 10−13 M, and (0.03–7.9) × 10−13 M, respectively, with biomass burning brown carbon playing a major role in light absorption and the formation of 1O2∗ and 3C∗. Extrapolating photooxidant kinetics from our dilute particle extracts to concentrated aerosol liquid water (ALW) conditions gives an estimated OH concentration of 7 × 10−15 M and ranges for 1O2∗ and 3C∗ of (0.6–7) × 10−12 M and (0.2–1) × 10−12 M, respectively. Compared to the results in Kaur et al. (2019), our ALW predictions show roughly 10 times higher OH, up to 5 times higher 3C, and 1O2∗ concentrations that are lower by factors of 20–100. These concentrations suggest that 3C∗ and 1O2∗ in ALW dominate the processing of organic compounds that react quickly with these oxidants (e.g., phenols and furans, respectively), while OH is more important for less reactive organics. 
    more » « less
  5. Abstract Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications. 
    more » « less