skip to main content


Title: Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli
Biocide use is essential and ubiquitous, exposing microbes to sub-inhibitory concentrations of antiseptics, disinfectants, and preservatives. This can lead to the emergence of biocide resistance, and more importantly, potential cross-resistance to antibiotics, although the degree, frequency, and mechanisms that give rise to this phenomenon are still unclear. Here, we systematically performed adaptive laboratory evolution of the gut bacteria Escherichia coli in the presence of sub-inhibitory, constant concentrations of ten widespread biocides. Our results show that 17 out of 40 evolved strains (43%) also decreased the susceptibility to medically relevant antibiotics. Through whole-genome sequencing, we identified mutations related to multidrug efflux proteins ( mdfA and acrR ), porins ( envZ and ompR ), and RNA polymerase ( rpoA and rpoBC ), as mechanisms behind the resulting (cross)resistance. We also report an association of several genes ( yeaW , pyrE , yqhC , aes , pgpA , and yeeP - isrC ) and specific mutations that induce cross-resistance, verified through mutation repairs. A greater capacity for biofilm formation with respect to the parent strain was also a common feature in 11 out of 17 (65%) cross-resistant strains. Evolution in the biocides chlorophene, benzalkonium chloride, glutaraldehyde, and chlorhexidine had the most impact in antibiotic susceptibility, while hydrogen peroxide and povidone-iodine the least. No cross-resistance to antibiotics was observed for isopropanol, ethanol, sodium hypochlorite, and peracetic acid. This work reinforces the link between exposure to biocides and the potential for cross-resistance to antibiotics, presents evidence on the underlying mechanisms of action, and provides a prioritized list of biocides that are of greater concern for public safety from the perspective of antibiotic resistance. Significance Statement Bacterial resistance and decreased susceptibility to antimicrobials is of utmost concern. There is evidence that improper biocide (antiseptic and disinfectant) use and discard may select for bacteria cross-resistant to antibiotics. Understanding the cross-resistance emergence and the risks associated with each of those chemicals is relevant for proper applications and recommendations. Our work establishes that not all biocides are equal when it comes to their risk of inducing antibiotic resistance; it provides evidence on the mechanisms of cross-resistance and a risk assessment of the biocides concerning antibiotic resistance under residual sub-inhibitory concentrations.  more » « less
Award ID(s):
1934568
NSF-PAR ID:
10284263
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhang, Xue (Ed.)
    ABSTRACT

    Bacterial growth and metabolic rates are often closely related. However, under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy decreases when bacteria are metabolically dormant, yet antibiotics select for resistant cells that grow fastest during treatment. That is, antibiotic selection counterintuitively favors bacteria with fast growth but slow metabolism. Despite this apparent contradiction, antibiotic resistant cells have historically been characterized primarily in the context of growth, whereas the extent of analogous changes in metabolism is comparatively unknown. Here, we observed that previously evolved antibiotic-resistant strains exhibited a unique relationship between growth and metabolism whereby nutrient utilization became more efficient, regardless of the growth rate. To better understand this unexpected phenomenon, we used a simplified model to simulate bacterial populations adapting to sub-inhibitory antibiotic selection through successive bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic concentrations could select for enhanced metabolic efficiency, defined based on nutrient utilization: drug-adapted cells are able to achieve the same biomass while utilizing less substrate, even in the absence of treatment. Moreover, simulations predicted that restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-dependent resistance; we confirmed this result using adaptive laboratory evolutions ofEscherichia coliunder carbenicillin treatment. Overall, these results indicate that metabolic efficiency is under direct selective pressure during antibiotic treatment and that differences in evolutionary context may determine both the efficacy of different antibiotics and corresponding re-sensitization approaches.

    IMPORTANCE

    The sustained emergence of antibiotic-resistant pathogens combined with the stalled drug discovery pipelines highlights the critical need to better understand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial growth and metabolic rates are often closely related, and resistant cells have historically been characterized exclusively in the context of growth. However, under antibiotic selection, antibiotics counterintuitively favor cells with fast growth, and slow metabolism. Through an integrated approach of mathematical modeling and experiments, this study thereby addresses the significant knowledge gap of whether antibiotic selection drives changes in metabolism that complement, and/or act independently, of antibiotic resistance phenotypes.

     
    more » « less
  2. Background

    Antimicrobial resistance is a growing concern in canineStaphylococcus pseudintermediusdermatitis. Treatment with rifampicin (RFP) is considered only in meticillin‐resistant and multidrug‐resistantS. pseudintermedius(MDR‐MRSP).

    Hypothesis/Objectives

    To determine an optimal RFP dosing for MDR‐MRSP treatment without induction of RFP resistance and identify causal mutations for antimicrobial resistance.

    Methods and materials

    Time–kill assays were performed in a control isolate and three MDR‐MRSP isolates at six clinically relevant concentrations [32 to 1,024 × MIC (the minimum inhibitory concentration)]. Whole‐genome resequencing and bioinformatic analysis were performed in the resistant strains developed in this assay.

    Results

    The genomic analysis identified nine antimicrobial resistance genes (ARGs) in MDR‐MRSP isolates, which are responsible for resistance to seven classes of antibiotics. RFP activity against all four isolates was consistent with a time‐dependent and bacteriostatic response. RFP resistance was observed in six of the 28 time–kill assays, including concentrations 64 × MIC in MDR‐MRSP1 isolates at 24 h, 32 × MIC in MDR‐MRSP2 at 48 h, 32 × MIC in MDR‐MRSP3 at 48 h and 256 × MIC in MDR‐MRSP3 at 24 h. Genome‐wide mutation analyses in these RFP‐resistant strains discovered the causal mutations in the coding region of therpoBgene.

    Conclusions and clinical relevance

    A study has shown that 6 mg/kg per os results in plasma concentrations of 600–1,000 × MIC ofS. pseudintermedius. Based on our data, this dose should achieve the minimum MIC (×512) to prevent RFP resistance development; therefore, we recommend a minimum daily dose of 6 mg/kg for MDR‐MRSP pyoderma treatment when limited antibiotic options are available.

     
    more » « less
  3. Miller, Samuel I. (Ed.)
    ABSTRACT The emergence of fluoroquinolone resistance in nosocomial pathogens has restricted the clinical efficacy of this antibiotic class. In Acinetobacter baumannii , the majority of clinical isolates now show high-level resistance due to mutations in gyrA (DNA gyrase) and parC (topoisomerase IV [topo IV]). To investigate the molecular basis for fluoroquinolone resistance, an exhaustive mutation analysis was performed in both drug-sensitive and -resistant strains to identify loci that alter ciprofloxacin sensitivity. To this end, parallel fitness tests of over 60,000 unique insertion mutations were performed in strains with various alleles in genes encoding the drug targets. The spectra of mutations that altered drug sensitivity were found to be similar in the drug-sensitive and gyrA parC double-mutant backgrounds, having resistance alleles in both genes. In contrast, the introduction of a single gyrA resistance allele, resulting in preferential poisoning of topo IV by ciprofloxacin, led to extreme alterations in the insertion mutation fitness landscape. The distinguishing feature of preferential topo IV poisoning was enhanced induction of DNA synthesis in the region of two endogenous prophages, with DNA synthesis associated with excision and circularization of the phages. Induction of the selective DNA synthesis in the gyrA background was also linked to heightened prophage gene transcription and enhanced activation of the mutagenic SOS response relative to that observed in either the wild-type (WT) or gyrA parC double mutant. Therefore, the accumulation of mutations that result in the stepwise evolution of high ciprofloxacin resistance is tightly connected to modulation of the SOS response and endogenous prophage DNA synthesis. IMPORTANCE Fluoroquinolones have been extremely successful antibiotics due to their ability to target multiple bacterial enzymes critical to DNA replication, the topoisomerases DNA gyrase and topo IV. Unfortunately, mutations lowering drug affinity for both enzymes are now widespread, rendering these drugs ineffective for many pathogens. To undermine this form of resistance, we examined how bacteria with target alterations differentially cope with fluoroquinolone exposures. We studied this problem in the nosocomial pathogen A. baumannii , which causes drug-resistant life-threatening infections. Employing genome-wide approaches, we uncovered numerous pathways that could be exploited to raise fluoroquinolone sensitivity independently of target alteration. Remarkably, fluoroquinolone targeting of topo IV in specific mutants caused dramatic hyperinduction of prophage replication and enhanced the mutagenic DNA damage response, but these responses were muted in strains with DNA gyrase as the primary target. This work demonstrates that resistance evolution via target modification can profoundly modulate the antibiotic stress response, revealing potential resistance-associated liabilities. 
    more » « less
  4. The threat of antibiotic resistance warrants the discovery of agents with novel antimicrobial mechanisms. Antimicrobial peptides (AMPs) directly disrupting bacterial membranes may overcome resistance to traditional antibiotics. AMP development for clinical use has been mostly limited to topical application to date. We developed a rational framework for systematically addressing this challenge using libraries composed of 86 novel Trp- and Arg-rich engineered peptides tested against clinical strains of the most common multidrug-resistant bacteria known as ESKAPE pathogens. Structure-function correlations revealed minimum lengths (as low as 16 residues) and Trp positioning for maximum antibacterial potency with mean minimum inhibitory concentration (MIC) of 2–4 μM and corresponding negligible toxicity to mammalian cells. Twelve peptides were selected based on broad-spectrum activity against both gram-negative and -positive bacteria and <25% toxicity to mammalian cells at maximum test concentrations. Most of the selected PAX remained active against the colistin-resistant clinical strains. Of the selected peptides, the shortest (the 16-residue E35) was further investigated for antibacterial mechanism and proof-of-concept in vivo efficacy. E35 killed an extensively-resistant isolate of Pseudomonas aeruginosa (PA239 from the CDC, also resistant to colistin) by irreversibly disrupting the cell membranes as shown by propidium iodide incorporation, using flow cytometry and live cell imaging. As proof of concept, in vivo toxicity studies showed that mice tolerated a systemic dose of up to 30 mg/kg peptide and were protected with a single 5 mg/kg intravenous (IV) dose against an otherwise lethal intraperitoneal injection of PA239. Efficacy was also demonstrated in an immune-compromised Klebsiella pneumoniae infection model using a daily dose of 4mg/kg E35 systemically for 2 days. This framework defines the determinants of efficacy of helical AMPs composed of only cationic and hydrophobic amino acids and provides a path for a potential departure from the restriction to topical use of AMPs toward systemic application. 
    more » « less
  5. Garrido, Daniel (Ed.)
    ABSTRACT The overuse and misuse of antibiotics in clinical settings and in food production have been linked to the increased prevalence and spread of antimicrobial resistance (AR). Consequently, public health and consumer concerns have resulted in a remarkable reduction in antibiotics used for food animal production. However, there are no data on the effectiveness of antibiotic removal in reducing AR shared through horizontal gene transfer (HGT). In this study, we used neonatal broiler chicks and Salmonella enterica serovar Heidelberg, a model food pathogen, to test if chicks raised antibiotic free harbor transferable AR. We challenged chicks with an antibiotic-susceptible S . Heidelberg strain using various routes of inoculation and determined if S . Heidelberg isolates recovered carried plasmids conferring AR. We used antimicrobial susceptibility testing and whole-genome sequencing (WGS) to show that chicks grown without antibiotics harbored an antimicrobial resistant S . Heidelberg population at 14 days after challenge and chicks challenged orally acquired AR at a higher rate than chicks inoculated via the cloaca. Using 16S rRNA gene sequencing, we found that S . Heidelberg infection perturbed the microbiota of broiler chicks, and we used metagenomics and WGS to confirm that a commensal Escherichia coli population was the main reservoir of an IncI1 plasmid acquired by S . Heidelberg. The carriage of this IncI1 plasmid posed no fitness cost to S . Heidelberg but increased its fitness when exposed to acidic pH in vitro . These results suggest that HGT of plasmids carrying AR shaped the evolution of S . Heidelberg and that antibiotic use reduction alone is insufficient to limit antibiotic resistance transfer from commensal bacteria to Salmonella enterica . IMPORTANCE The reported increase in antibiotic-resistant bacteria in humans has resulted in a major shift away from antibiotic use in food animal production. This shift has been driven by the assumption that removing antibiotics will select for antibiotic susceptible bacterial taxa, which in turn will allow the currently available antibiotic arsenal to be more effective. This change in practice has highlighted new questions that need to be answered to assess the effectiveness of antibiotic removal in reducing the spread of antibiotic resistance bacteria. This research demonstrates that antibiotic-susceptible Salmonella enterica serovar Heidelberg strains can acquire multidrug resistance from commensal bacteria present in the gut of neonatal broiler chicks, even in the absence of antibiotic selection. We demonstrate that exposure to acidic pH drove the horizontal transfer of antimicrobial resistance plasmids and suggest that simply removing antibiotics from food animal production might not be sufficient to limit the spread of antimicrobial resistance. 
    more » « less