skip to main content

Title: A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects’ age

Multiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r = 0.5808). Individual variability within the single association axis well predicted the age of the subject (r = 0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes of human aging can be well captured by a multivariate data fusion approach.

Award ID(s):
2203524 2148729 1912270 1734853 1636893
Publication Date:
Journal Name:
Communications Biology
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fitness consequences of cooperation can vary across an organism’s lifespan. For non-kin groups, especially, social advantages must balance intrinsic costs of cooperating with non-relatives. In this study, we asked how challenging life history stages can promote stable, long-term alliances among unrelated ant queens. We reared single- and multi-queen colonies of the primary polygynous harvester ant,Pogonomyrmex californicus, from founding through the first ten months of colony growth, when groups face high mortality risks. We found that colonies founded by multiple, unrelated queens experienced significant survival and growth advantages that outlasted the colony founding period. Multi-queen colonies experienced lower mortalitymore »than single-queen colonies, and queens in groups experienced lower mortality than solitary queens. Further, multi-queen colonies produced workers at a faster rate than did single-queen colonies, even while experiencing lower per-queen worker production costs. Additionally, we characterized ontogenetic changes in the organization of labor, and observed increasing and decreasing task performance diversity by workers and queens, respectively, as colonies grew. This dynamic task allocation likely reflects a response to the changing role of queens as they are increasingly able to delegate risky and costly tasks to an expanding workforce. Faster worker production in multi-queen colonies may beneficially accelerate this behavioral transition from a vulnerable parent–offspring group to a stable, growing colony. These combined benefits of cooperation may facilitate the retention of multiple unrelated queens in mature colonies despite direct fitness costs, providing insight into the evolutionary drivers of stable associations between unrelated individuals.

    « less
  2. Abstract

    Convergent research identifies a general factor (“P factor”) that confers transdiagnostic risk for psychopathology. Large-scale networks are key organizational units of the human brain. However, studies of altered network connectivity patterns associated with the P factor are limited, especially in early adolescence when most mental disorders are first emerging. We studied 11,875 9- and 10-year olds from the Adolescent Brain and Cognitive Development (ABCD) study, of whom 6593 had high-quality resting-state scans. Network contingency analysis was used to identify altered interconnections associated with the P factor among 16 large-scale networks. These connectivity changes were then further characterized with quadrantmore »analysis that quantified the directionality of P factor effects in relation to neurotypical patterns of positive versus negative connectivity across connections. The results showed that the P factor was associated with altered connectivity across 28 network cells (i.e., sets of connections linking pairs of networks);pPERMUTATIONvalues < 0.05 FDR-corrected for multiple comparisons. Higher P factor scores were associated with hypoconnectivity within default network and hyperconnectivity between default network and multiple control networks. Among connections within these 28 significant cells, the P factor was predominantly associated with “attenuating” effects (67%;pPERMUTATION < 0.0002), i.e., reduced connectivity at neurotypically positive connections and increased connectivity at neurotypically negative connections. These results demonstrate that the general factor of psychopathology produces attenuating changes across multiple networks including default network, involved in spontaneous responses, and control networks involved in cognitive control. Moreover, they clarify mechanisms of transdiagnostic risk for psychopathology and invite further research into developmental causes of distributed attenuated connectivity.

    « less
  3. Background Multiple strategies can be used when self-monitoring diet, physical activity, and perceived stress, but no gold standards are available. Although self-monitoring is a core element of self-management and behavior change, the success of mHealth behavioral tools depends on their validity and reliability, which lack evidence. African American and Latina mothers in the United States are high-priority populations for apps that can be used for self-monitoring of diet, physical activity, and stress because the body mass index (BMI) of mothers typically increases for several years after childbirth and the risks of obesity and its’ sequelae diseases are elevated among minoritymore »populations. Objective To examine the intermethod reliability and concurrent validity of smartphone-based self-monitoring via ecological momentary assessments (EMAs) and use of daily diaries for diet, stress, and physical activity compared with brief recall measures, anthropometric biomeasures, and bloodspot biomarkers. Methods A purposive sample (n=42) of primarily African American (16/42, 39%) and Latina (18/42, 44%) mothers was assigned Android smartphones for using Ohmage apps to self-monitor diet, perceived stress, and physical activity over 6 months. Participants were assessed at 3- and 6-month follow-ups. Recall measures included brief food frequency screeners, physical activity assessments adapted from the National Health and Nutrition Examination Survey, and the nine-item psychological stress measure. Anthropometric biomeasures included BMI, body fat, waist circumference, and blood pressure. Bloodspot assays for Epstein–Barr virus and C-reactive protein were used as systemic load and stress biomarkers. EMAs and daily diary questions assessed perceived quality and quantity of meals, perceived stress levels, and moderate, vigorous, and light physical activity. Units of analysis were follow-up assessments (n=29 to n=45 depending on the domain) of the participants (n=29 with sufficient data for analyses). Correlations, R2 statistics, and multivariate linear regressions were used to assess the strength of associations between variables. Results Almost all participants (39/42, 93%) completed the study. Intermethod reliability between smartphone-based EMAs and diary reports and their corresponding recall reports was highest for stress and diet; correlations ranged from .27 to .52 (P<.05). However, it was unexpectedly low for physical activity; no significant associations were observed. Concurrent validity was demonstrated for diet EMAs and diary reports on systolic blood pressure (r=−.32), C-reactive protein level (r=−.34), and moderate and vigorous physical activity recalls (r=.35 to.48), suggesting a covariation between healthy diet and physical activity behaviors. EMAs and diary reports on stress were not associated with Epstein–Barr virus and C-reactive protein level. Diary reports on moderate and vigorous physical activity were negatively associated with BMI and body fat (r=−.35 to −.44, P<.05). Conclusions Brief smartphone-based EMA use may be valid and reliable for long-term self-monitoring of diet, stress, and physical activity. Lack of intermethod reliability for physical activity measures is consistent with prior research, warranting more research on the efficacy of smartphone-based self-monitoring of self-management and behavior change support.« less
  4. The link between mind, brain, and behavior has mystified philosophers and scientists for millennia. Recent progress has been made by forming statistical associations between manifest variables of the brain (e.g., electroencephalogram [EEG], functional MRI [fMRI]) and manifest variables of behavior (e.g., response times, accuracy) through hierarchical latent variable models. Within this framework, one can make inferences about the mind in a statistically principled way, such that complex patterns of brain–behavior associations drive the inference procedure. However, previous approaches were limited in the flexibility of the linking function, which has proved prohibitive for understanding the complex dynamics exhibited by the brain.more »In this article, we propose a data-driven, nonparametric approach that allows complex linking functions to emerge from fitting a hierarchical latent representation of the mind to multivariate, multimodal data. Furthermore, to enforce biological plausibility, we impose both spatial and temporal structure so that the types of realizable system dynamics are constrained. To illustrate the benefits of our approach, we investigate the model’s performance in a simulation study and apply it to experimental data. In the simulation study, we verify that the model can be accurately fitted to simulated data, and latent dynamics can be well recovered. In an experimental application, we simultaneously fit the model to fMRI and behavioral data from a continuous motion tracking task. We show that the model accurately recovers both neural and behavioral data and reveals interesting latent cognitive dynamics, the topology of which can be contrasted with several aspects of the experiment.

    « less
  5. Abstract

    Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly describedmore »brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.

    « less