skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects’ age
Abstract Multiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r = 0.5808). Individual variability within the single association axis well predicted the age of the subject (r = 0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes of human aging can be well captured by a multivariate data fusion approach.  more » « less
Award ID(s):
2203524 2148729 1912270 1734853 1636893
PAR ID:
10284367
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories. 
    more » « less
  2. Louis, Matthieu (Ed.)
    Aging affects almost all aspects of an organism—its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the full repertoire of an animal’s behavior across the lifespan. Using data from fruit flies ( D. melanogaster ) we measure the full repertoire of behaviors as a function of age. We observe a sexually dimorphic pattern of changes in the behavioral repertoire during aging. Although the stereotypy of the behaviors and the complexity of the repertoire overall remains relatively unchanged, we find evidence that the observed alterations in behavior can be explained by changing the fly’s overall energy budget, suggesting potential connections between metabolism, aging, and behavior. 
    more » « less
  3. Abstract We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan. 
    more » « less
  4. Abstract Brain functional connectivity (FC) derived from functional magnetic resonance imaging has been serving as a potential ‘fingerprint’ for adults. However, cross-scan variation of FC can be substantial and carries biological information, especially during childhood. Here we performed a large-scale cross-sectional analysis on cross-scan FC stability and its associations with a diverse range of health measures in children. Functional network connectivity (FNC) was extracted via a hybrid independent component analysis framework on 9,071 participants and compared across four scans. We found that FNC can identify a given child from a large group with high accuracy (maximum >94%) and replicated the results across multiple scans. We then performed a linear mixed-effects model to investigate how cross-scan FNC stability was predictive of children’s behaviour. Although we could not find strong relationships between FNC stability and children’s behaviour, we observed significant but small associations between them (maximumr = 0.1070), with higher stability correlated with better cognitive performance, longer sleep duration and less psychotic expression. Via a multivariate analysis method, we captured larger effects between FNC stability and children’s cognitive performance (maximumr = 0.2932), which further proved the relevance of FNC stability to neurocognitive development. Overall, our findings show that a child’s connectivity profile is not only intrinsic but also exhibits reliable variability across scans, regardless of brain growth and development. Cross-scan connectivity stability may serve as a valuable neuroimaging feature to draw inferences on early cognitive and psychiatric behaviours in children. 
    more » « less
  5. Summary With rapid development of techniques to measure brain activity and structure, statistical methods for analyzing modern brain-imaging data play an important role in the advancement of science. Imaging data that measure brain function are usually multivariate high-density longitudinal data and are heterogeneous across both imaging sources and subjects, which lead to various statistical and computational challenges. In this article, we propose a group-based method to cluster a collection of multivariate high-density longitudinal data via a Bayesian mixture of smoothing splines. Our method assumes each multivariate high-density longitudinal trajectory is a mixture of multiple components with different mixing weights. Time-independent covariates are assumed to be associated with the mixture components and are incorporated via logistic weights of a mixture-of-experts model. We formulate this approach under a fully Bayesian framework using Gibbs sampling where the number of components is selected based on a deviance information criterion. The proposed method is compared to existing methods via simulation studies and is applied to a study on functional near-infrared spectroscopy, which aims to understand infant emotional reactivity and recovery from stress. The results reveal distinct patterns of brain activity, as well as associations between these patterns and selected covariates. 
    more » « less