Efforts to broaden participation in computing address how systemic school structures, educator preparation, and curriculum can provide inclusive learning spaces for all students. The emerging multiplicity of scholarship in computer science (CS) education forwards diverse voices, perspectives, and positionalities, and together, provide a rich set of evidence-based narratives that can transform K-12 policies and practices. The four projects featured in this panel bring together CS education efforts with varying methodologies focused on equity-oriented pedagogies and learning for all youth across the US. This panel will focus not only on sharing the multi-pronged efforts of the featured projects, but also on developing a shared vision among participants and panelists for what equity" can and should be in the future of both SIGCSE and CS education as we celebrate SIGCSE's 50th anniversary. By highlighting the work of projects rather than individuals in this panel, audience members will have the opportunity to learn about how collaborative efforts create and examine contexts for equity in CS education across diverse stakeholders, while also providing a richer base for constructing visions of equity that go beyond mere platitudes, toward action items for broadening participation in computing.
more »
« less
Teaching in an open village: a case study on culturally responsive computing in compulsory education
ABSTRACT Background: As teachers work to broaden the participation of racially and ethnically underrepresented groups in computer science (CS), culturally responsive computing (CRC) becomes more pertinent to formal settings. Objective: Yet, equity-oriented literature offers limited guidance for developing deep forms of CRC in the classroom. In response, we support the claim that “it takes a village” to develop equity-oriented CS education but additively highlight the roles of cultural experts in the process. Methods: We use a case study methodology to explore one instance of this: a collaboration between a multi-racial team of researchers, a Black cosmetologist, and a White technology teacher. Findings: Three themes supported the CRC collaboration: multi-directional relationship building, iterative engagement with culture-computing, and collaborative implementation of a hybrid lesson. Implications: As opposed to orienting broadening participation around extractive metaphors like “pipelines,” our case study constructs the metaphor of an “open village” to orient CS education toward collaborations between schools and the communities they serve.
more »
« less
- Award ID(s):
- 1930072
- PAR ID:
- 10284461
- Date Published:
- Journal Name:
- Computer Science Education
- ISSN:
- 0899-3408
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Culturally responsive computing (CRC), that centers sociopolitical issues and transformational uses of technology, has been described as valuable for increasing engagement with computing, especially for historically underrepresented minoritized students. But what do high school students think? Through a sociocultural lens prioritizing student voices recorded in 56 interviews over a period of 2 years (1–3 years after students’ first experience with computer science (CS) education through Exploring Computer Science or Advanced Placement CS Principles in high school), this study centers the perspectives of 39 primarily low-income, Latine and Black youth from urban California and rural Mississippi public schools to understand what they perceive as the role of technology in our world and what they subsequently desire of their computing education. While none have studied CRC before, the majority responded with CRC ideas about the kind of pedagogy they believe would make for a more meaningful computing learning experience: They see computing as a form of power that impacts both good and bad in the world and want computing educators to prepare them to take on these issues of equity, ethics, social responsibility, and underrepresentation in the field. The students’ perspectives offer important pedagogical insight into how to support deeper engagement with computing in current CS for All initiatives, while also preparing youth for the rapidly evolving and increasingly complex computing landscape that impacts all of our lives.more » « less
-
CSforALL and SageFox (Ed.)Computer science (CS) has the potential to positively impact the economic well-being of those who pursue it, and the lives of those who benefit from its innovations. Yet, large CS learning opportunity gaps exist for students from systemically excluded populations. Because of these disparities, the Computer Science for All (CS for All) movement has brought nationwide attention to inequity in CS education. Funding agencies and institutions are supporting the development of research-practice partnerships (RPPs) to address these disparities, recognizing that collaboration between researchers and educators yields accurate and relevant research results, while informing teaching practice. However, for initiatives to effectively make computing inclusive, partnership members need to begin with a shared and collaboratively generated definition of equity to which all are accountable. This paper takes a critical look at the development of a shared definition of equity and its application in a CS for All RPP composed of university researchers and administrators from local education agencies across a large west coast state. Details are shared about how the RPP came together across research and practice to define equity, as well as how that definition continued to evolve and inform the larger project’s work with school administrators/educators. Suggestions about how to apply key lessons from this equity exercise are offered to inform similar justice-oriented projects.more » « less
-
As efforts to broaden participation in computing and provide equitable computer science education to all students increase across the country, within states, and within cities and districts, this research aims to investigate whether existing efforts have increased equity. This research analyzes three years of computer science access, enrollment, and success data across the state of California to: (a) examine whether racial, gender, and socioeconomic equity in CS access, enrollment and success has improved; (b) identify persistent barriers to racial, gender and socioeconomic equity, and (c) inform statewide strategies to ensure equity in computer science across California. Findings indicate despite several promising trends, including an increase in CS access and participation across California, racial, gender and SES gaps remain in access to CS courses, participation, and success. Additional statewide policies and practices are needed to ensure equity in CS across California.more » « less
-
Hartshone, R (Ed.)This landscape study explored structural barriers to diversity in computing education by focusing on Computer Science Education State Supervisors (CSEdSS) in state education agencies. Positioned in 41 states, CSEdSS play a crucial role in ensuring equitable access to K-12 CS learning pathways. Despite efforts to expand CS education policy, equity issues in access persist. Based on a survey of CSEdSS (n=32) with a 78% response rate, we applied the Capacity for, Access to, Participation in, and Experience of (CAPE) Framework to analyze CSEdSS survey responses to questions about how they enact their role and the ways in which equity in CS education impacts their work. Findings revealed that CSEdSS leveraged the opportunities available to them to build capacity and advance equitable access to CS education across diverse state contexts, even as they navigated systems that present challenges to equitable implementation. The results highlighted the importance of using a critical analysis approach to interrogate policy enactment through a sociocultural and systems-based lens, addressing the complexities of implementing CS education policies at macrosystem, mesosystem, and microsystem levels to support inclusive and equitable pathways in CS education.more » « less