skip to main content

Title: Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health
Climate change driven increases in the frequency of extreme heat events (EHE) and extreme precipitation events (EPE) are contributing to both infectious and non-infectious disease burden, particularly in urban city centers. While the share of urban populations continues to grow, a comprehensive assessment of populations impacted by these threats is lacking. Using data from weather stations, climate models, and urban population growth during 1980–2017, here, we show that the concurrent rise in the frequency of EHE, EPE, and urban populations has resulted in over 500% increases in individuals exposed to EHE and EPE in the 150 most populated cities of the world. Since most of the population increases over the next several decades are projected to take place in city centers within low- and middle-income countries, skillful early warnings and community specific response strategies are urgently needed to minimize public health impacts and associated costs to the global economy.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Journal of Environmental Research and Public Health
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations inmore »the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences.« less
  2. Abstract The spatial distribution of population affects disease transmission, especially when shelter in place orders restrict mobility for a large fraction of the population. The spatial network structure of settlements therefore imposes a fundamental constraint on the spatial distribution of the population through which a communicable disease can spread. In this analysis we use the spatial network structure of lighted development as a proxy for the distribution of ambient population to compare the spatiotemporal evolution of COVID-19 confirmed cases in the USA and China. The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band sensor on the NASA/NOAA Suomi satellite hasmore »been imaging night light at ~ 700 m resolution globally since 2012. Comparisons with sub-kilometer resolution census observations in different countries across different levels of development indicate that night light luminance scales with population density over ~ 3 orders of magnitude. However, VIIRS’ constant ~ 700 m resolution can provide a more detailed representation of population distribution in peri-urban and rural areas where aggregated census blocks lack comparable spatial detail. By varying the low luminance threshold of VIIRS-derived night light, we depict spatial networks of lighted development of varying degrees of connectivity within which populations are distributed. The resulting size distributions of spatial network components (connected clusters of nodes) vary with degree of connectivity, but maintain consistent scaling over a wide range (5 × to 10 × in area & number) of network sizes. At continental scales, spatial network rank-size distributions obtained from VIIRS night light brightness are well-described by power laws with exponents near −2 (slopes near −1) for a wide range of low luminance thresholds. The largest components (10 4 to 10 5 km 2 ) represent spatially contiguous agglomerations of urban, suburban and periurban development, while the smallest components represent isolated rural settlements. Projecting county and city-level numbers of confirmed cases of COVID-19 for the USA and China (respectively) onto the corresponding spatial networks of lighted development allows the spatiotemporal evolution of the epidemic (infection and detection) to be quantified as propagation within networks of varying connectivity. Results for China show rapid nucleation and diffusion in January 2020 followed by rapid decreases in new cases in February. While most of the largest cities in China showed new confirmed cases approaching zero before the end of February, most of these cities also showed distinct second waves of cases in March or April. Whereas new cases in Wuhan did not approach zero until mid-March, as of December 2020 it has not yet experienced a second wave of cases. In contrast, the results for the USA show a wide range of trajectories, with an abrupt transition from slow increases in confirmed cases in a small number of network components in January and February, to rapid geographic dispersion to a larger number of components shortly before mobility reductions occurred in March. Results indicate that while most of the upper tail of the network had been exposed by the end of March, the lower tail of the component size distribution has only shown steep increases since mid-June.« less
  3. Abstract

    Extreme heat events are increasing in frequency and intensity, challenging electricity infrastructure due to growing cooling demand and posing public health risks to urbanites. In order to minimize risks from increasing extreme heat, it is critical to (a) project increases in electricity use with urban warming, and (b) identify neighborhoods that are most vulnerable due in part to a lack of air conditioning (AC) and inability to afford increased energy. Here, we utilize smart meter data from 180 476 households in Southern California to quantify increases in residential electricity use per degree warming for each census tract. We alsomore »compute AC penetration rates, finding that air conditioners are less prevalent in poorer census tracts. Utilizing climate change projections for end of century, we show that 55% and 30% of the census tracts identified as most vulnerable are expected to experience more than 16 and 32 extreme heat days per year, respectively.

    « less
  4. Questions regarding population stability among animals and plants are fundamental to population ecology, yet this has not been a topic studied by archeologists focusing on prehistoric human populations. This is an important knowledge gap. The fluctuation of human populations over decades to centuries – population instability – may constrain the expansion of human economies. A first step toward describing basic patterns of population stability would be to identify sizes of fluctuations through time, since smaller fluctuations are more stable than larger fluctuations. We conduct a biogeographic analysis of the long-term stability of human societies in North America using a continentalmore »scale radiocarbon dataset. Our analysis compares the stability of summed calibrated radiocarbon date probability distributions (SPDs) with subsistence strategies and modeled climate stability between 6000 and 300 BP. This coarse-grained analysis reveals general trends regarding the stability of human systems in North America that future studies may build upon. Our results demonstrate that agricultural sequences have more stable SPDs than hunter-gatherer sequences in general, but agricultural sequences also experience rare, extreme increases and decreases in SPDs not seen among hunter-gatherers. We propose that the adoption of agriculture has the unintended consequence of increasing population density and stability over most time scales, but also increases the vulnerability of populations to large, rare changes. Conversely, hunter-gatherer systems remain flexible and less vulnerable to large population changes. Climate stability may have an indirect effect on long-term population stability, and climate shocks may be buffered by other aspects of subsistence strategies prior to affecting human demography.« less
  5. Abstract Extreme heat events are becoming more frequent and intense. In cities, the urban heat island (UHI) can often intensify extreme heat exposure, presenting a public health challenge across vulnerable populations without access to adaptive measures. Here, we explore the impacts of increasing residential air-conditioning (AC) adoption as one such adaptive measure to extreme heat, with New York City (NYC) as a case study. This study uses AC adoption data from NYC Housing and Vacancy Surveys to study impacts to indoor heat exposure, energy demand, and UHI. The Weather Research and Forecasting (WRF) model, coupled with a multilayer building environmentmore »parameterization and building energy model (BEP–BEM), is used to perform this analysis. The BEP–BEM schemes are modified to account for partial AC use and used to analyze current and full AC adoption scenarios. A city-scale case study is performed over the summer months of June–August 2018, which includes three different extreme heat events. Simulation results show good agreement with surface weather stations. We show that increasing AC systems to 100% usage across NYC results in a peak energy demand increase of 20%, while increasing UHI on average by 0.42 °C. Results highlight potential trade-offs in extreme heat adaptation strategies for cities, which may be necessary in the context of increasing extreme heat events.« less