Organic compounds in the atmosphere play a pivotal role in atmospheric chemistry, and clouds are significant in the genesis and alteration of these compounds. Di-carboxylic organic anions such as oxalate serve as tracers for aqueous processing. This poster details our findings from summer measurements of three major organic acids (formic acid, acetic acid, oxalic acid), as well as inorganic anions (sulfate, chloride, nitrate) and cations (sodium, potassium, ammonium, calcium, magnesium) in cloud water, aerosol, and cloud droplet residual samples collected at the summit of Whiteface Mountain (WFM) in the Adirondack Mountains, northern New York State. We also evaluate the contribution of these organic acids to water-soluble organic carbon (WSOC) concentrations. Previous studies have explored the oxalate: WSOC ratio with ozone levels, aiming to deduce the influence of biogenic Volatile Organic Compounds (VOCs) on Secondary Organic Aerosol (SOA) formation from nearby forest ecosystems. Our poster presents new observations that significantly broaden this understanding by comparing to diverse global environments and analyzing both cloud water and aerosol phases. Additionally, we introduce oxalate: sulfate ratios from our dataset, proposed by other researchers as a key indicator of aqueous processing due to the enhanced production rates of these ions by liquid water content (sulfate ion) or droplet surface area (oxalate ion). We compare the observed range of oxalate: sulfate ratios with those from field campaigns conducted in other regions. Moreover, for the first time, we examine the relationship between ammonium and organic acids across cloud water, aerosol, and droplet residual samples collected in 2023, and discuss the influence of wildfire smoke on these dynamics.
more »
« less
Investigating the evolution of water-soluble organic carbon in evaporating cloud water
Cloud cycling plays a key role in the evolution of atmospheric particles and gases, producing secondary aerosol mass and transforming the optical properties and impacts of aerosols globally. In this study, bulk cloud water samples collected at Whiteface Mountain (Wilmington, NY) in the summer of 2017 were aerosolized, dried to 50% RH, and analyzed for the evaporative loss of water soluble organic carbon (WSOC) and for brown carbon (BrC) formation. Systematic WSOC evaporation occurred in all cloud water samples, while no evidence for drying induced BrC formation was observed. On average, 11% (±3%) of WSOC evaporated when the aerosolized cloud droplets were dried to 50% RH, though this represents a lower bound on the WSOC reversibly partitioned to clouds due to experimental constraints. To our knowledge, this represents the first direct measurements of organic evaporation from actual cloud water undergoing drying. Formate and acetate contributed 19%, on average, to the evaporated WSOC, while no oxalate evaporation occurred. GECKO-A model simulations were carried out to predict the production of WSOC compounds that reversibly partition to cloud water from photooxidation of an array of VOCs. The model results suggest that precursor VOC identity and oxidation regime (VOC:NO x ) have a dramatic effect on the reversible partitioning of WSOC to cloud water and the abundance of aqSOA precursors, though the higher abundance of reversibly partitioned WSOC predicted by the model may be due to aqueous production of low-volatility material in the actual cloud samples. This study underscores the importance of the large fraction of unidentified compounds that contribute to WSOC in cloud water and their aqueous processing.
more »
« less
- PAR ID:
- 10284814
- Date Published:
- Journal Name:
- Environmental Science: Atmospheres
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2634-3606
- Page Range / eLocation ID:
- 21 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Light absorbing organic carbon, or brown carbon (BrC), can be a significantcontributor to the visible light absorption budget. However, the sources ofBrC and the contributions of BrC to light absorption are not wellunderstood. Biomass burning is thought to be a major source of BrC.Therefore, as part of the WE-CAN (Western Wildfire Experiment for CloudChemistry, Aerosol Absorption and Nitrogen) study, BrC absorption data werecollected on board the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130 aircraft as it intercepted smoke fromwildfires in the western US in July–August 2018. BrC absorptionmeasurements were obtained in near real-time using two techniques. The firstcoupled a particle-into-liquid sampler (PILS) with a liquid waveguidecapillary cell and a total organic carbon analyzer for measurements ofwater-soluble BrC absorption and WSOC (water-soluble organic carbon). Thesecond employed a custom-built photoacoustic aerosol absorption spectrometer(PAS) to measure total absorption at 405 and 660 nm. The PAS BrC absorption at 405 nm (PAS total Abs 405 BrC) was calculated by assuming the absorption determined by the PAS at 660 nm was equivalent to the black carbon (BC) absorption and the BC aerosol absorption Ångström exponent was 1. Data from the PILS and PAS were combined to investigate the water-soluble vs. total BrC absorption at 405 nm in the various wildfire plumes sampled during WE-CAN. WSOC, PILS water-soluble Abs 405, and PAS total Abs 405 tracked each other in and out of the smoke plumes. BrC absorption was correlated with WSOC (R2 value for PAS =0.42 and PILS =0.60) and CO (carbon monoxide) (R2 value for PAS =0.76 and PILS =0.55) for all wildfires sampled. The PILS water-soluble Abs 405 was corrected for thenon-water-soluble fraction of the aerosol using the calculated UHSAS(ultra-high-sensitivity aerosol spectrometer) aerosol mass. The correctedPILS water-soluble Abs 405 showed good closure with the PAS total Abs 405BrC with a factor of ∼1.5 to 2 difference. This differencewas explained by particle vs. bulk solution absorption measured by the PASvs. PILS, respectively, and confirmed by Mie theory calculations. DuringWE-CAN, ∼ 45 % (ranging from 31 % to 65 %) of the BrCabsorption was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on firedynamics or the time since emission over 9 h.more » « less
-
The primary source of water for crops and livestock in the United States Central High Plains is irrigation from the Ogallala Aquifer. Due to the semi-arid climate of this region, little rainfall contributes to watering crops, thereby resulting in water scarcity. Reducing the evaporation from soil is one approach to conserve the water. In this study, a soil evaporation chamber was designed and constructed to study the impacts of environmental conditions on evaporation from Ottawa sand. Prior to entering the sand test section, compressed air flow was dried in a desiccator then split in two flows before entering the 57mmx228mmx838mm test section, with one airflow flowing above the 57mm thick sand layer and the other below and, subsequently, flowing through the moist sand layer. The percent relative humidity (RH) was measured at the entrance and exit to record the change in relative humidity and, therefore, water content removed from the sand. Using inlet air mass flow rates of air of approximately 1E-4kg/s–2E-4kg/s, temperatures of 28–31oC, and dry air (i.e. 0–1%RH), exit flows of 19–20oC and 80–85%RH were measured. Measured evaporation rates ranging from 3.0E-6kg/s to 5.0E-6kg/s for soil saturation levels of 55–80.5%.more » « less
-
The primary source of water for crops and livestock in the United States Central High Plains is irrigation from the Ogallala Aquifer. Due to the semi-arid climate of this region, little rainfall contributes to watering crops, thereby resulting in water scarcity. Reducing the evaporation from soil is one approach to conserve the water. In this study, a soil evaporation chamber was designed and constructed to study the impacts of environmental conditions on evaporation from Ottawa sand. Prior to entering the sand test section, compressed air flow was dried in a desiccator then split in two flows before entering the 57mmx228mmx838mm test section, with one airflow flowing above the 57mm thick sand layer and the other below and, subsequently, flowing through the moist sand layer. The percent relative humidity (RH) was measured at the entrance and exit to record the change in relative humidity and, therefore, water content removed from the sand. Using inlet air mass flow rates of air of approximately 1E-4kg/s–2E-4kg/s, temperatures of 28–31oC, and dry air (i.e. 0–1%RH), exit flows of 19–20oC and 80–85%RH were measured. Measured evaporation rates ranging from 3.0E-6kg/s to 5.0E-6kg/s for soil saturation levels of 55–80.5%.more » « less
-
The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.more » « less
An official website of the United States government

