- Award ID(s):
- 1719252
- Publication Date:
- NSF-PAR ID:
- 10284815
- Journal Name:
- Atmospheric chemistry and physics discussion
- Volume:
- 2021
- Page Range or eLocation-ID:
- 1 - 22
- ISSN:
- 1680-7375
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. This study characterizes the impact of the Chesapeake Bay and associated meteorological phenomena on aerosol chemistry during the second Ozone Water-Land Environmental Transition Study (OWLETS-2) field campaign, which took place from 4 June to 5 July 2018. Measurements of inorganic PM2.5 composition, gas-phase ammonia (NH3), and an array of meteorological parameters were undertaken at Hart-Miller Island (HMI), a land–water transition site just east of downtown Baltimore on the Chesapeake Bay. The observations at HMI were characterized by abnormally high NH3 concentrations (maximum of 19.3 µg m−3, average of 3.83 µg m−3), which were more than a factor of 3 higher than NH3 levels measured at the closest atmospheric Ammonia Monitoring Network (AMoN) site (approximately 45 km away). While sulfate concentrations at HMI agreed quite well with those measured at a regulatory monitoring station 45 km away, aerosol ammonium and nitrate concentrations were significantly higher, due to the ammonia-rich conditions that resulted from the elevated NH3. The high NH3 concentrations were largely due to regional agricultural emissions, including dairy farms in southeastern Pennsylvania and poultry operations in the Delmarva Peninsula (Delaware–Maryland–Virginia). Reduced NH3 deposition during transport over the Chesapeake Bay likely contributed to enhanced concentrations at HMI compared to the more inland AMoN site. Several peak NH3 events weremore »
-
Particle acidity (aerosol pH) is an important driver of atmospheric chemical processes and the resulting effects on human and environmental health. Understanding the factors that control aerosol pH is critical when enacting control strategies targeting specific outcomes. This study characterizes aerosol pH at a land-water transition site near Baltimore, MD during summer 2018 as part of the second Ozone Water-Land Environmental Transition Study (OWLETS-2) field campaign. Inorganic fine mode aerosol composition, gas-phase NH3 measurements, and all relevant meteorological parameters were used to characterize the effects of temperature, aerosol liquid water (ALW), and composition on predictions of aerosol pH. Temperature, the factor linked to the control of NH3 partitioning, was found to have the most significant effect on aerosol pH during OWLETS-2. Overall, pH varied with temperature at a rate of −0.047 K−1 across all observations, though the sensitivity was −0.085 K−1 for temperatures > 293 K. ALW had a minor effect on pH, except at the lowest ALW levels (< 1 µg m−3) which caused a significant increase in aerosol acidity (decrease in pH). Aerosol pH was generally insensitive to composition (SO42− , SO42−:NH4+ , Tot-NH3 = NH3 + NH4+), consistent with recent studies in other locations. In a companion paper, the sources of episodic NH3 events (95th percentile concentrations, NH3 > 7.96 µg m−3)more »
-
Abstract. Particle acidity (aerosol pH) is an important driver of atmospheric chemical processes and the resulting effects on human and environmentalhealth. Understanding the factors that control aerosol pH is critical when enacting control strategies targeting specific outcomes. This studycharacterizes aerosol pH at a land–water transition site near Baltimore, MD, during summer 2018 as part of the second Ozone Water-Land EnvironmentalTransition Study (OWLETS-2) field campaign. Inorganic fine-mode aerosol composition, gas-phase NH3 measurements, and all relevantmeteorological parameters were used to characterize the effects of temperature, aerosol liquid water (ALW), and composition on predictions ofaerosol pH. Temperature, the factor linked to the control of NH3 partitioning, was found to have the most significant effect on aerosol pHduring OWLETS-2. Overall, pH varied with temperature at a rate of −0.047 K−1 across all observations, though the sensitivity was−0.085 K−1 for temperatures > 293 K. ALW had a minor effect on pH, except at the lowest ALW levels(< 1 µg m−3), which caused a significant increase in aerosol acidity (decrease in pH). Aerosol pH was generally insensitive tocomposition (SO42-, SO42-:NH4+, total NH3 (Tot-NH3) = NH3 + NH4+), consistentwith recent studies in other locations. In a companion paper, the sources of episodic NH3 events (95th percentile concentrations,NH3 > 7.96 µg m−3) during the study are analyzed; aerosol pH was higher by only ∼ 0.1–0.2 pHmore »
-
Atmospheric ammonia (NH3) is the primary form of reactive nitrogen (Nr) and a precursor ofammonium (NH4+) aerosols. Ammonia has been linked to adverse impacts on human health, the loss ofecosystem biodiversity, and plays a key role in aerosol radiative forcing. The midwestern United States is themajor NH3source in North America because of dense livestock operations and the high use of syntheticnitrogen fertilizers. Here, we combine tall‐tower (100 m) observations in Minnesota and Weather Researchand Forecasting model coupled with Chemistry (WRF‐Chem) modeling to investigate high and low NH3emission episodes within the U.S. Corn Belt to improve our understanding of the distribution of emissionsources and transport processes. We examined observations and performed model simulations for cases inFebruary through November of 2017 and 2018. The results showed the following: (1) Peak emissions inNovember 2017 were enhanced by above‐normal air temperatures, implying aQ10(i.e., the change in NH3emissions for a temperature increase of 10°C) of 2.5 for emissions. (2) The intensive livestock emissionsrom northern Iowa, approximately 400 km away from the tall tower, accounted for 17.6% of theabundance in tall‐tower NH3mixing ratios. (3) Ammonia mixing ratios in the innermost domain 3frequently (i.e., 336 hr, 48% of November 2017) exceeded 5.3 ppb, an important air qualitymore »
-
Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrCmore »