skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Am I getting through? Surveying students on what messages they recall from the first day of STEM classes
Abstract BackgroundThe first day of class helps students learn about what to expect from their instructors and courses. Messaging used by instructors, which varies in content and approach on the first day, shapes classroom social dynamics and can affect subsequent learning in a course. Prior work established the non-content Instructor Talk Framework to describe the language that instructors use to create learning environments, but little is known about the extent to which students detect those messages. In this study, we paired first day classroom observation data with results from student surveys to measure how readily students in introductory STEM courses detect non-content Instructor Talk. ResultsTo learn more about the instructor and student first day experiences, we studied 11 introductory STEM courses at two different institutions. The classroom observation data were used to characterize course structure and use of non-content Instructor Talk. The data revealed that all instructors spent time discussing their instructional practices, building instructor/student relationships, and sharing strategies for success with their students. After class, we surveyed students about the messages their instructors shared during the first day of class and determined that the majority of students from within each course detected messaging that occurred at a higher frequency. For lower frequency messaging, we identified nuances in what students detected that may help instructors as they plan their first day of class. ConclusionsFor instructors who dedicate the first day of class to establishing positive learning environments, these findings provide support that students are detecting the messages. Additionally, this study highlights the importance of instructors prioritizing the messages they deem most important and giving them adequate attention to more effectively reach students. Setting a positive classroom environment on the first day may lead to long-term impacts on student motivation and course retention. These outcomes are relevant for all students, but in particular for students in introductory STEM courses which are often critical prerequisites for being in a major.  more » « less
Award ID(s):
1712060 1712074
PAR ID:
10284886
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
8
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Momsen, Jennifer L (Ed.)
    Student impressions formed during the first day of class can impact course satisfaction and performance. Despite its potential importance, little is known about how instructors format the first day of class. Here, we report on observations of the first day of class in 23 introductory science, technology, engineering, and math (STEM) courses. We first described how introductory STEM instructors structure their class time by characterizing topics covered on the first day through inductive coding of class videos. We found that all instructors discussed policies and basic information. However, a cluster analysis revealed two groups of instructors who differed primarily in their level of STEM content coverage. We then coded the videos with the noncontent Instructor Talk framework, which organizes the statements instructors make unrelated to disciplinary content into several categories and subcategories. Instructors generally focused on building the instructor–student relationship and establishing classroom culture. Qualitative analysis indicated that instructors varied in the specificity of their noncontent statements and may have sent mixed messages by making negatively phrased statements with seemingly positive intentions. These results uncovered variation in instructor actions on the first day of class and can help instructors more effectively plan this day by providing messages that set students up for success. 
    more » « less
  2. MacDonald, Laura J (Ed.)
    ABSTRACT Building rapport between instructors and students is a challenge, especially in large classes and in online environments. Previous work has shown that non-content Instructor Talk can foster positive student-teacher relationships, but less is known about non-content talk in electronic instructor messages. Here, we used the established Instructor Talk framework to craft positively phrased electronic messages that were sent through the course’s learning management system to students enrolled in an introductory biology course at a large public institution. We examined both close- and open-ended survey responses (n= 226) to assess students’ perceptions of the electronic messages, the course, and their instructor. Of the established Instructor Talk categories, the building student/instructor relationship category was most memorable to students. Encouragingly, 61% of students indicated they “liked the course more” and 88% indicated they “liked the instructor more” in response to the electronic messages. This demonstrates that implementing positively phrased Instructor Talk into electronic communication is an effective way to build rapport between instructors and students. 
    more » « less
  3. The instructional practices used in introductory college courses often differ dramatically from those used in high school courses, and dissatisfaction with these practices is cited by students as a prominent reason for leaving science, technology, engineering, and mathematics (STEM) majors. To better characterize the transition to college course work, we investigated the extent to which incoming expectations of course activities differ based on student demographic characteristics, as well as how these expectations align with what students will experience. We surveyed more than 1500 undergraduate students in large introductory STEM courses at three research-intensive institutions during the first week of classes about their expectations regarding how class time would be spent in their courses. We found that first-generation and first-semester students predict less lecture than their peers and that class size had the largest effect on student predictions. We also collected classroom observation data from the courses and found that students generally underpredicted the amount of lecture observed in class. This misalignment between student predictions and experiences, especially for first-generation and first-semester college students and students enrolled in large- and medium-size classes, has implications for instructors and universities as they design curricula for introductory STEM courses with explicit retention goals. 
    more » « less
  4. Abstract BackgroundActive learning, on average, increases student performance in STEM courses. Yet, there is also large variation in the effectiveness of these implementations. A consistent goal of active learning is moving students towards becoming active constructors of their knowledge. This emphasis means student engagement is of central importance. Thus, variation in student engagement could help explain variation in outcomes from active learning. In this study, we employ Pekrun’s Control–Value Theory to examine the impact of four aspects of course social and cultural environments on student engagement. This theory posits that social and cultural features of the course environment influence students’ appraisals of their ability to control their academic outcomes from the course and the value they see in those outcomes. Control and value in turn influence the emotions students experience in the course and their behaviors. We selected four features of the course environment suggested in the literature to be important in active learning courses: course goal structure, relevance of course content, students’ trust in their instructor, and perceived course competition. ResultsWe surveyed students in 13 introductory STEM courses. We used structural equation modeling to map how features of the course environment related to control, value, and academic emotions, as well as how control, value, and academic emotions influenced engagement. We found engagement was positively related to control and value as well as the emotion of curiosity. Engagement was negatively related to the emotion of boredom. Importantly, features of the course environment influenced these four variables. All features influenced control: goal structure, relevance, and instructor trust increased it, while competition decreased it. All features except competition were related positively to value. Relevance and instructor trust increased curiosity. Goal structure, relevance, and instructor trust all reduced boredom, while competition increased it. ConclusionOverall, our study suggests that the way instructors structure the social and cultural environment in active learning courses can impact engagement. Building positive instructor–student relationships, reducing course competition, emphasizing mastery and the relevance of the course to students can all increase engagement in course activities. 
    more » « less
  5. A central goal of the Learning Assistant (LA) model is to improve students’ learning of science through the transformation of instructor practices. There is minimal existing research on the impact of college physics instructor experiences on their effectiveness. To investigate the association between college introductory physics instructors’ experiences with and without LAs and student learning, we drew on data from the Learning About STEM Student Outcomes (LASSO) database. The LASSO database provided us with student-level data (concept inventory scores and demographic data) for 4,365 students and course-level data (instructor experience and course features) for the students’ 93 mechanics courses. We performed Hierarchical Multiple Imputation to impute missing data and Hierarchical Linear Modeling to nest students within courses when modeling the associations be- tween instructor experience and student learning. Our models predict that instructors’ effectiveness decreases as they gain experience teaching without LAs. However, LA supported environments appear to remediate this decline in effectiveness as instructor effectiveness is maintained while they gain experience teaching with LAs. 
    more » « less