skip to main content

Title: Melanic pigmentation and light preference within and between two Drosophila species
Environmental adaptation and species divergence often involve suites of co-evolving traits. Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. In Drosophila, the pigmentation genes ebony and tan have pleiotropic effects on flies’ response to light, creating the potential for correlated evolution of pigmentation and vision. Here we investigate differences in light preference within and between two sister species, Drosophila americana and D. novamexicana, which differ in pigmentation in part because of evolution at ebony and tan, and occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light, and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males of D. novamexicana line N14 and D. americana line A00, the light-bodied D. novamexicana was found slightly but significantly more often than D. americana in the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference between D. novamexicana-N14 and D. americana-A00. Additionally, the other dark line of D. americana (A04) was found in the light more » habitat more often than the light-bodied D. novamexicana-N14, in contrast to our predictions. However, the lightest line of D. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines of D. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly-pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Award ID(s):
1655311 1754075
Publication Date:
Journal Name:
Ecology and evolution
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How genetic variation is maintained in ecologically important traits is a central question in evolutionary biology. Male Trinidadian guppies, Poecilia reticulata, exhibit high genetic diversity in color patterns within populations, and field and laboratory studies implicate negative frequency-dependent selection in maintaining this variation. However, behavioral and ecological processes that mediate this selection in natural populations are poorly understood. We evaluated female mate preference in 11 natural guppy populations, including paired populations from high- and low-predation habitats, to determine if this behavior is responsible for negative frequency-dependent selection and to evaluate its prevalence in nature. Females directed significantly more attention to males with rare and unfamiliar color patterns than to males with common patterns. Female attention also increased with the area of male orange coloration, but this preference was independent of the preference for rare and unfamiliar patterns. We also found an overall effect of predation regime; females from high-predation populations directed more attention toward males than those from low-predation populations. Again, however, the habitat-linked preference was statistically independent from the preference for rare and unfamiliar patterns. Because previous research indicates that female attention to males predicts male mating success, we conclude that the prevalence of female preference for malesmore »with rare and unfamiliar color patterns across many natural populations supports the hypothesis that female preference is an important process underlying the maintenance of high genetic variation in guppy color patterns.

    « less
  2. Abstract Background

    Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders.


    We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Batemanmore »gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings.


    Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.

    « less
  3. We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1 , mitochondrial cox-1 and ctb-1 , and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set ( cox-1 ) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1 . For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with testermore »females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness ( gas-1 , as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness ( cox-1 ). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction.« less
  4. Taborsky, Michael (Ed.)
    Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behaviormore »than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding).« less
  5. Dubilier, Nicole (Ed.)
    ABSTRACT Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia -modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia -induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene ( cif ) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia -density variation in two classic CI systems. w Ri CI strength decreases slowly with Drosophila simulans male age (6%/day), but w Mel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as w Ri-infected males age, but both surprisingly increase as w Mel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts w Mel density), or host immune expression covary with age-dependent w Melmore »densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence. IMPORTANCE Wolbachia bacteria are the most common animal-associated endosymbionts due in large part to their manipulation of host reproduction. Many Wolbachia cause cytoplasmic incompatibility (CI) that kills uninfected host eggs. Infected eggs are protected from CI, favoring Wolbachia spread in natural systems and in transinfected mosquito populations where vector-control groups use strong CI to maintain pathogen-blocking Wolbachia at high frequencies for biocontrol of arboviruses. CI strength varies considerably in nature and declines as males age for unknown reasons. Here, we determine that CI strength weakens at different rates with age in two model symbioses. Wolbachia density and CI gene expression covary with w Ri-induced CI strength in Drosophila simulans , but neither explain rapidly declining w Mel-induced CI in aging D. melanogaster males. Patterns of host immune gene expression suggest a candidate mechanism behind age-dependent w Mel densities. These findings inform how age-dependent CI may contribute to Wolbachia prevalence in natural systems and potentially in transinfected systems.« less