Abstract Bond breaking and forming are essential components of chemical reactions. Recently, the structure and formation of covalent bonds in single molecules have been studied by non-contact atomic force microscopy (AFM). Here, we report the details of a single dative bond breaking process using non-contact AFM. The dative bond between carbon monoxide and ferrous phthalocyanine was ruptured via mechanical forces applied by atomic force microscope tips; the process was quantitatively measured and characterized both experimentally and via quantum-based simulations. Our results show that the bond can be ruptured either by applying an attractive force of ~150 pN or by a repulsive force of ~220 pN with a significant contribution of shear forces, accompanied by changes of the spin state of the system. Our combined experimental and computational studies provide a deeper understanding of the chemical bond breaking process.
more »
« less
Measuring interactions of DNA with nanoporous protein crystals by atomic force microscopy
Crosslinked porous protein crystals are a new biomaterial that can be engineered to encapsulate, stabilize, and organize guest molecules, nanoparticles, and biological moieties. In this study, for the first time, the combined interactions of DNA strands with porous protein crystals are quantitatively measured by high-resolution atomic force microscopy (AFM) and chemical force microscopy. The surface structure of protein crystals with unusually large pores was observed in liquid via high-resolution AFM. Force–distance ( F – D ) curves were also obtained using AFM tips modified to present or capture DNA. The modification of AFM tips allowed the tips to covalently bind DNA that was pre-loaded in the protein crystal nanopores. The modified tips enabled the interactions of DNA molecules with protein crystals to be quantitatively studied while revealing the morphology of the buffer-immersed protein crystal surface in detail, thereby preserving the structure and properties of protein crystals that could be disrupted or destroyed by drying. The hexagonal space group was manifest at the crystal surface, as were the strong interactions between DNA and the porous protein crystals in question. In sum, this study furthered our understanding of how a new protein-based biomaterial can be used to bind guest DNA assemblies.
more »
« less
- Award ID(s):
- 1704901
- PAR ID:
- 10285047
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 13
- Issue:
- 24
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 10871 to 10881
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Protein crystals are versatile nanostructured materials that can be readily engineered for applications in nanomedicine and nanobiotechnology. Despite their versatility, the small size of typical individual protein crystals (less than one cubic mm) presents challenges for macroscale applications. One way to overcome this limitation is by immobilizing protein crystals onto larger substrates. Cotton is composed primarily of cellulose, the most common natural fiber in the world, and is routinely used in numerous material applications including textiles, explosives, paper, and bookbinding. Here, two types of protein crystals were conjugated to the cellulosic substrate of cotton fabric using a 1,1′-carbonyldiimidazole/aldehyde mediated coupling protocol. The efficacy of this attachment was assessed via accelerated laundering and quantified by fluorescence imaging. The ability to load guest molecules of varying sizes into the scaffold structure of the conjugated protein crystals was also assessed. This work demonstrates the potential to create multifunctional textiles by incorporating diverse protein crystal scaffolds that can be infused with a multiplicity of useful guest molecules. Cargo molecule loading and release kinetics will depend on the size of the guest molecules as well as the protein crystal solvent channel geometry. Here, we demonstrate the loading of a small molecule dye into the small pores of hen egg white lysozyme crystals and a model enzyme into the 13-nm pores delimited by “CJ” crystals composed of an isoprenoid-binding protein from Campylerbacter jejuni.more » « less
-
Atomic Force Microscopy (AFM) is widely used for topographic imaging of DNA and protein-DNA complexes in ambient conditions with nanometer resolution. In AFM studies of protein-DNA complexes, identifying the protein’s location on the DNA substrate is one of the major goals. Such studies require distinguishing between the DNA ends, which can be accomplished by end-specific labeling of the DNA substrate. We selected as labels three-way DNA junctions (3WJ) assembled from synthetic DNA oligonucleotides with two arms of 39–40 bp each. The third arm has a three-nucleotide overhang, GCT, which is paired with the sticky end of the DNA substrate generated by the SapI enzyme. Ligation of the 3WJ results in the formation of a Y-type structure at the end of the linear DNA mole cule, which is routinely identified in the AFM images. The yield of labeling is 69%. The relative orientation of arms in the Y-end varies, such dynamics were directly visualized with time-lapse AFM studies using high-speed AFM (HS-AFM). This labeling approach was applied to the characterization of the nucleosome arrays assembled on different DNA templates. HS-AFM experiments revealed a high dynamic of nucleosomes resulting in a spontaneous unraveling followed by disassembly of nucleosomes.more » « less
-
Abstract Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.more » « less
-
Machine learning approaches for improving atomic force microscopy instrumentation and data analyticsAtomic force microscopy (AFM) is a part of the scanning probe microscopy family. It provides a platform for high-resolution topographical imaging, surface analysis as well as nanomechanical property mapping for stiff and soft samples (live cells, proteins, and other biomolecules). AFM is also crucial for measuring single-molecule interaction forces and important parameters of binding dynamics for receptor-ligand interactions or protein-protein interactions on live cells. However, performing AFM measurements and the associated data analytics are tedious, laborious experimental procedures requiring specific skill sets and continuous user supervision. Significant progress has been made recently in artificial intelligence (AI) and deep learning (DL), extending into microscopy. In this review, we summarize how researchers have implemented machine learning approaches so far to improve the performance of atomic force microscopy (AFM), make AFM data analytics faster, and make data measurement procedures high-throughput. We also shed some light on the different application areas of AFM that have significantly benefited from applications of machine learning frameworks and discuss the scope and future possibilities of these crucial approaches.more » « less
An official website of the United States government

