skip to main content


Title: Flower orientation influences floral temperature, pollinator visits and plant fitness
Summary

Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator.Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness.

We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success.

East‐facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East‐facing capitula also sired more offspring than west‐facing capitula and under some conditions produced heavier and better‐filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits.

These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness.

 
more » « less
Award ID(s):
1759942
NSF-PAR ID:
10446350
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
232
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 868-879
Size(s):
["p. 868-879"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Floral structures, such as stamen appendages, play crucial roles in pollinator attraction, pollen release dynamics and, ultimately, the reproductive success of plants. The pollen‐rewarding, bee buzz‐pollinated flowers ofMelastomataceaeoften bear conspicuous staminal appendages. Surprisingly, their functional role in the pollination process remains largely unclear. We useHuberia bradeanaBochorny & R. Goldenb. (Melastomataceae) with conspicuously elongated, twisted stamen appendages to investigate their functional role in the pollination process.

    We studied the effect of stamen appendages on pollinator behaviour and reproductive success by comparing manipulated flowers (appendages removed) with unmanipulated flowers. To assess bee pollinator behaviour, we measured three properties of buzzes (vibrations) produced by bees onHuberiaflowers: frequency, duration and number of buzzes per flower visit. We measured male and female reproductive success by monitoring pollen release and deposition after single bee visits. Finally, we used artificial vibrations and laser vibrometry to assess how flower vibrational properties change with the removal of stamen appendages.

    Our results show that the absence of staminal appendages does not modify bee buzzing behaviour. Pollen release was higher in unmanipulated flowers, but stigmatic pollen loads differ only marginally between the two treatments. We also detected lower vibration amplitudes in intact flowers as compared to manipulated flowers in artificial vibration experiments.

    The presence of connective appendages are crucial in transmitting vibrations and assuring optimal pollen release. Therefore, we propose that the high diversity of colours, shapes and sizes of connective appendages in buzz‐pollinated flowers may have evolved by selection through male fitness.

     
    more » « less
  2. Abstract

    Changes from historic weather patterns have affected the phenology of many organisms world‐wide. Altered phenology can introduce organisms to novel abiotic conditions during growth and modify species interactions, both of which could drive changes in reproduction.

    We explored how climate change can alter plant reproduction using an experiment in which we manipulated the individual and combined effects of snowmelt timing and frost exposure, and measured subsequent effects on flowering phenology, peak flower density, frost damage, pollinator visitation and reproduction of four subalpine wildflowers. Additionally, we conducted a pollen‐supplementation experiment to test whether the plants in our snowmelt and frost treatments were pollen limited for reproduction. The four plants included species flowering in early spring to mid‐summer.

    The phenology of all four species was significantly advanced, and the bloom duration was longer in the plots from which we removed snow, but with species‐specific responses to snow removal and frost exposure in terms of frost damage, flower production, pollinator visitation and reproduction. The two early blooming species showed significant signs of frost damage in both early snowmelt and frost treatments, which negatively impacted reproduction for one of the species. Further, we recorded fewer pollinators during flowering for the earliest‐blooming species in the snow removal plots. We also found lower fruit and seed set for the early blooming species in the snow removal treatment, which could be attributed to the plants growing under unfavourable abiotic conditions. However, the later‐blooming species escaped frost damage even in the plots where snow was removed, and experienced increased pollinator visitation and reproduction.

    Synthesis.This study provides insight into how plant communities could become altered due to changes in abiotic conditions, and some of the mechanisms involved. While early blooming species may be at a disadvantage under climate change, species that bloom later in the season may benefit from early snowmelt, suggesting that climate change has the potential to reshape flowering communities.

     
    more » « less
  3. Abstract

    Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

    In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

    We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

    We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

    Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

     
    more » « less
  4. Abstract

    Species that persist in small populations isolated by habitat destruction may experience reproductive failure. Self‐incompatible plants face dual threats of mate‐limitation and competition with co‐flowering plants for pollination services. Such competition may lower pollinator visitation, increase heterospecific pollen transfer and reduce the likelihood that a visit results in successful pollination.

    To understand how isolation from mates and competition with co‐flowering species contribute to reproductive failure in fragmented habitat, we conducted an observational study of a tallgrass prairie perennialEchinacea angustifolia. We quantified the isolation of focal individuals from mates, characterized species richness and counted inflorescences within 1 m radius, observed pollinator visitation, collected pollinators, quantified pollen loads on pollinators and onEchinaceastigmas, and measured pollination success. Throughout the season, we sampled 223 focal plants across 10 remnant prairie sites.

    We present evidence that both co‐flowering species and isolation from mates substantially limit reproduction inEchinacea. As the flowering season progressed, the probability of pollinator visitation to focal plants decreased and evidence for pollen‐limited reproduction increased. Pollinators were most likely to visitEchinaceaplants from low‐richness floral neighbourhoods with close potential mates, or plants from high‐richness neighbourhoods with distant potential mates. Frequent visitation only increased pollination success in the former case, likely becauseEchinaceain high‐richness floral neighbourhoods received low‐quality visits.

    Synthesis. InEchinacea,reproduction was limited by isolation from potential mates and the richness of co‐flowering species. These aspects of the floral neighbourhood influenced pollinator visitation and pollination success, although conditions that predicted high visitation did not always lead to high pollination success. These results reveal how habitat modification and destruction, which influence floral neighbourhood and isolation from conspecific mates, can differentially affect various stages of reproductive biology in self‐incompatible plants. Our results suggest that prairie conservation and restoration efforts that promote patches of greater floral diversity may improve reproductive outcomes in fragmented habitats.

     
    more » « less
  5. Abstract

    The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.

    Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.

    HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.

    Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.

     
    more » « less