skip to main content

Title: Flower orientation influences floral temperature, pollinator visits and plant fitness
Effective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness. We artificially manipulated sunflower capitulum orientation and temperature in both field and controlled conditions and assessed flower physiology, pollinator visits, seed traits and siring success. East-facing capitula were found to have earlier style elongation, pollen presentation and pollinator visits compared with capitula manipulated to face west. East-facing capitula also sired more offspring than west-facing capitula and under some conditions produced heavier and better-filled seeds. Local ambient temperature change on the capitulum was found to be a key factor regulating the timing of style elongation, pollen emergence and pollinator visits. These results indicate that eastward capitulum orientation helps to control daily rhythms in floral temperature, with direct consequences on the timing of style elongation and pollen emergence, pollinator visitation, and plant fitness
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1759942
Publication Date:
NSF-PAR ID:
10285175
Journal Name:
New Phytologist
ISSN:
0028-646X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Obtaining an optimal flower temperature can be crucial for plant reproduction because temperature mediates flower growth and development, pollen and ovule viability, and influences pollinator visitation. The thermal ecology of flowers is an exciting, yet understudied field of plant biology. Scope This review focuses on several attributes that modify exogenous heat absorption and retention in flowers. We discuss how flower shape, orientation, heliotropic movements, pubescence, coloration, opening–closing movements and endogenous heating contribute to the thermal balance of flowers. Whenever the data are available, we provide quantitative estimates of how these floral attributes contribute to heating of the flower, and ultimately plant fitness. Outlook Future research should establish form–function relationships between floral phenotypes and temperature, determine the fitness effects of the floral microclimate, and identify broad ecological correlates with heat capture mechanisms.
  2. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitorsmore »declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success.« less
  3. Abstract Background Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. Scope In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches tomore »elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. Conclusions The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.« less
  4. Pathogens pose significant threats to pollinator health and food security. Pollinators can transmit diseases during foraging, but the consequences of plant species composition for infection is unknown. In agroecosystems, flowering strips or hedgerows are often used to augment pollinator habitat. We used canola as a focal crop in tents and manipulated flowering strip composition using plant species we had previously shown to result in higher or lower bee infection in short-term trials. We also manipulated initial colony infection to assess impacts on foraging behavior. Flowering strips using high-infection plant species nearly doubled bumble bee colony infection intensity compared to low-infection plant species, with intermediate infection in canola-only tents. Both infection treatment and flowering strips reduced visits to canola, but we saw no evidence that infection treatment shifted foraging preferences. Although high-infection flowering strips increased colony infection intensity, colony reproduction was improved with any flowering strips compared to canola alone. Effects of flowering strips on colony reproduction were explained by nectar availability, but effects of flowering strips on infection intensity were not. Thus, flowering strips benefited colony reproduction by adding floral resources, but certain plant species also come with a risk of increased pathogen infection intensity.

  5. Abstract

    Seed production can be affected by water availability and also depend on the amount (pollen intensity) and quality of pollen deposited. The way pollen receipt on the stigma translates into seeds produced follows that of a saturating dose–response. Not only can water availability and pollen intensity each influence seed production, these factors could interact in their effects on seed production. Changes to the relationship between seed production and pollen intensity can in turn influence pollinator effectiveness and pollinator-mediated selection. We asked how water availability affected indices of plant fitness (seed set, fruit set and seed mass) and the relationship between pollen intensity and seed production in Phacelia parryi. We conducted a greenhouse experiment where we manipulated water availability (either high- or low-water) to pollen recipient plants and hand-pollinated each plant with a range of pollen intensities. We conducted 703 hand-pollinations on 30 plants. For each hand-pollinated flower we measured pollen deposited, seed production and seed mass. We then generated a piecewise regression of the relationship between pollen intensity and seed production, and determined average effects of water on plant fitness measures. This experiment was paired with a field observational study aimed to document natural variation in pollen deposition. Averagemore »seed production per fruit was 21 % higher in the high-watered plants. The relationship between pollen intensity and seed production differed between the two water treatments. Plants under high-water exhibited a wider range in which pollen deposition increased seed production. Average natural pollen intensities fell within different regions of the piecewise regression for low- and high-water plants. Water availability can alter the efficiency by which pollen received is translated into seeds produced. Our greenhouse data suggest that only under certain pollen intensity environments will water availability affect how pollen received is translated into seeds produced.

    « less