skip to main content


Title: A Comparison of FDTD-Predicted Surface Magnetic Fields with SuperMAG, INTERMAGNET, and BATS-R-US and RIM Virtual Magnetometers during a Geomagnetic Storm
The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150 km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided.  more » « less
Award ID(s):
1662318
NSF-PAR ID:
10285181
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. American Geophysical Union Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Faraday's law of induction is responsible for setting up a geoelectric field due to the variations in the geomagnetic field caused by ionospheric currents. This drives geomagnetically induced currents (GICs) which flow in large ground‐based technological infrastructure such as high‐voltage power lines. The geoelectric field is often a localized phenomenon exhibiting significant variations over spatial scales of only hundreds of kilometers. This is due to the complex spatiotemporal behavior of electrical currents flowing in the ionosphere and/or large gradients in the ground conductivity due to highly structured local geological properties. Over some regions, and during large storms, both of these effects become significant. In this study, we quantify the regional variability ofdB/dtusing closely placed IMAGE stations in northern Fennoscandia. The dependency between regional variability, solar wind conditions, and geomagnetic indices are also investigated. Finally, we assess the significance of spatial geomagnetic variations to modeling GICs across a transmission line. Key results from this study are as follows: (1) Regional geomagnetic disturbances are important in modeling GIC during strong storms; (2)dB/dtcan vary by several times up to a factor of three compared to the spatial average; (3)dB/dtand its regional variation is coupled to the energy deposited into the magnetosphere; and (4) regional variability can be more accurately captured and predicted from a local index as opposed to a global one. These results demonstrate the need for denser magnetometer networks at high latitudes where transmission lines extending hundreds of kilometers are present.

     
    more » « less
  2. Abstract

    Geomagnetic storms are primarily driven by stream interaction regions (SIRs) and coronal mass ejections (CMEs). Since SIR and CME storms have different solar wind and magnetic field characteristics, the magnetospheric response may vary accordingly. Using FAST/TEAMS data, we investigate the variation of ionospheric O+and H+outflow as a function of geomagnetic storm phase during SIR and CME magnetic storms. The effects of storm size and solar EUV flux, including solar cycle and seasonal effects, on storm time ionospheric outflow, are also investigated. The results show that for both CME and SIR storms, the O+and H+fluences peak during the main phase, and then declines in the recovery phase. However, for CME storms, there is also significant increase during the initial phase. Because the outflow starts during the initial phase in CME storms, there is time for the O+to reach the plasma sheet before the start of the main phase. Since plasma is convected into the ring current from the plasma sheet during the main phase, this may explain why more O+is observed in the ring current during CME storms than during SIR storms. We also find that outflow fluence is higher for intense storms than moderate storms and is higher during solar maximum than solar minimum.

     
    more » « less
  3. null (Ed.)
    Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations. 
    more » « less
  4. Abstract

    Intense geoelectric fields during geomagnetic storms drive geomagnetically induced currents in power grids and other infrastructure, yet there are limited direct measurements of these storm‐time geoelectric fields. Moreover, most previous studies examining storm‐time geoelectric fields focused on single events or small geographic regions, making it difficult to determine the typical source(s) of intense geoelectric fields. We perform the first comparative analysis of (a) the sources of intense geoelectric fields over multiple geomagnetic storms, (b) using 1‐s cadence geoelectric field measurements made at (c) magnetotelluric survey sites distributed widely across the United States. Temporally localized intense perturbations in measured geoelectric fields with prominences (a measure of the relative amplitude of geoelectric field enhancement above the surrounding signal) of at least 500 mV/km were detected during geomagnetic storms with Dst minima (Dstmin) of less than −100 nT from 2006 to 2019. Most of the intense geoelectric fields were observed in resistive regions with magnetic latitudes greater than 55° even though we have 167 sites located at lower latitudes during geomagnetic storms of −200 nT ≤ Dstmin< −100 nT. Our study indicates intense short‐lived (<1 min) and geoelectric field perturbations with periods on the order of 1–2 min are common. Most of these perturbations cannot be resolved with 1‐min data because they correspond to higher frequency or impulsive phenomena that vary on timescales shorter than that sampling interval. The sources of geomagnetic perturbations inducing these intense geoelectric fields include interplanetary shocks, interplanetary magnetic field turnings, substorms, and ultralow frequency waves.

     
    more » « less
  5. Abstract

    An analysis is made of geophysical records of the 24 March 1940, magnetic storm and related reports of interference on long‐line communication and power systems across the contiguous United States and, to a lesser extent, Canada. Most long‐line system interference occurred during local daytime, after the second of two storm sudden commencements and during the early part of the storm's main phase. The high degree of system interference experienced during this storm is inferred to have been due to unusually large‐amplitude and unusually rapid geomagnetic field variation, possibly driven by interacting interplanetary coronal‐mass ejections. Geomagnetic field variation, in turn, induced geoelectric fields in the electrically conducting solid Earth, establishing large potential differences (voltages) between grounding points at communication depots and transformer substations connected by long transmission lines. It is shown that March 1940 storm‐time communication‐ and power‐system interference was primarily experienced over regions of high electromagnetic surface impedance, mainly in the upper Midwest and eastern United States. Potential differences measured on several grounded long lines during the storm exceeded 1‐min resolution voltages that would have been induced by the March 1989 storm. In some places, voltages exceeded American electric‐power‐industry benchmarks. It is concluded that the March 1940 magnetic storm was unusually effective at inducing geoelectric fields. Although modern communication systems are now much less dependent on long electrically conducting transmission lines, modern electric‐power‐transmission systems are more dependent on such lines, and they, thus, might experience interference with the future occurrence of a storm as effective as that of March 1940.

     
    more » « less