skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparison of FDTD-Predicted Surface Magnetic Fields with SuperMAG, INTERMAGNET, and BATS-R-US and RIM Virtual Magnetometers during a Geomagnetic Storm
The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150 km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided.  more » « less
Award ID(s):
1662318
PAR ID:
10285181
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. American Geophysical Union Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Geomagnetically induced currents (GICs) result from the interaction of the time variation of ground magnetic field during a geomagnetic disturbance with the Earth's deep electrical resistivity structure. In this study, we simulate induced GICs in a hypothetical representation of a low‐latitude power transmission network located mainly over the large Paleozoic Paraná basin (PB) in southern Brazil. Two intense geomagnetic storms in June and December 2015 are chosen and geoelectric fields are calculated by convolving a three‐dimensional (3‐D) Earth resistivity model with recorded geomagnetic variations. ThedB/dtproxy often used to characterize GIC activity fails during the June storm mainly due to the relationship of the instantaneous geoelectric field to previous magnetic field values. Precise resistances of network components are unknown, so assumptions are made for calculating GIC flows from the derived geoelectric field. The largest GICs are modeled in regions of low conductance in the 3‐D resistivity model, concentrated in an isolated substation at the northern edge of the network and in a cluster of substations in its central part where the east‐west (E‐W) oriented transmission lines coincide with the orientation of the instantaneous geoelectric field. The maximum magnitude of the modeled GIC was obtained during the main phase of the June storm, modeled at a northern substation, while the lowest magnitudes were found over prominent crustal anomalies along the PB axis and bordering the continental margin. The simulation results will be used to prospect the optimal substations for installation of GIC monitoring equipment. 
    more » « less
  2. Abstract Faraday's law of induction is responsible for setting up a geoelectric field due to the variations in the geomagnetic field caused by ionospheric currents. This drives geomagnetically induced currents (GICs) which flow in large ground‐based technological infrastructure such as high‐voltage power lines. The geoelectric field is often a localized phenomenon exhibiting significant variations over spatial scales of only hundreds of kilometers. This is due to the complex spatiotemporal behavior of electrical currents flowing in the ionosphere and/or large gradients in the ground conductivity due to highly structured local geological properties. Over some regions, and during large storms, both of these effects become significant. In this study, we quantify the regional variability ofdB/dtusing closely placed IMAGE stations in northern Fennoscandia. The dependency between regional variability, solar wind conditions, and geomagnetic indices are also investigated. Finally, we assess the significance of spatial geomagnetic variations to modeling GICs across a transmission line. Key results from this study are as follows: (1) Regional geomagnetic disturbances are important in modeling GIC during strong storms; (2)dB/dtcan vary by several times up to a factor of three compared to the spatial average; (3)dB/dtand its regional variation is coupled to the energy deposited into the magnetosphere; and (4) regional variability can be more accurately captured and predicted from a local index as opposed to a global one. These results demonstrate the need for denser magnetometer networks at high latitudes where transmission lines extending hundreds of kilometers are present. 
    more » « less
  3. NA (Ed.)
    Understanding of Earth’s geomagnetic environment is critical to mitigating the space weather impacts caused by disruptive geoelectric fields in power lines and other conductors on Earth’s surface. These impacts are the result of a chain of processes driven by the solar wind and linking Earth’s magnetosphere, ionosphere, thermosphere and Earth’s surface. Tremendous progress has been made over the last two decades in understanding the solar wind driving mechanisms, the coupling mechanisms connecting the magnetically controlled regions of near-Earth space, and the impacts of these collective processes on human technologies on Earth’s surface. Studies of solar wind drivers have been focused on understanding the responses of the geomagnetic environment to spatial and temporal variations in the solar wind associated with Coronal Mass Ejections, Corotating Interaction Regions, Interplanetary Shocks, High-Speed Streams, and other interplanetary magnetic field structures. Increasingly sophisticated numerical models are able to simulate the magnetospheric response to the solar wind forcing associated with these structures. Magnetosphere-ionosphere-thermosphere coupling remains a great challenge, although new observations and sophisticated models that can assimilate disparate data sets have improved the ability to specify the electrodynamic properties of the high latitude ionosphere. The temporal and spatial resolution needed to predict the electric fields, conductivities, and currents in the ionosphere is driving the need for further advances. These parameters are intricately tied to auroral phenomena—energy deposition due to Joule heating and precipitating particles, motions of the auroral boundary, and ion outflow. A new view of these auroral processes is emerging that focuses on small-scale structures in the magnetosphere and their ionospheric effects, which may include the rapid variations in current associated with geomagnetically induced currents and the resulting perturbations to geoelectric fields on Earth’s surface. Improvements in model development have paralleled the advancements in understanding, yielding coupled models that better replicate the spatial and temporal scales needed to simulate the interconnected domains. Many realizations of such multi-component systems are under development, each with its own limitations and advantages. Challenges remain in the ability of models to quantify uncertainties introduced by propagation of solar wind parameters, to account for numerical effects in model codes, and to handle the special conditions occurring during extreme events. The impacts to technical systems on the ground are highly sensitive to the local electric properties of Earth’s surface, as well as to the specific technology at risk. Current research is focused on understanding the characteristics of geomagnetic disturbances that are important for geomagnetically induced currents, the development of earth conductivity models, the calculation of geoelectric fields, and the modeling of induced currents in the different affected systems. Assessing and mitigating the risks to technical systems requires quantitative knowledge of the range of values to be expected under all possible geomagnetic and technical conditions. Considering the progress that has been made in studying the chain of events leading to hazardous geomagnetic disturbances, the path forward will require concerted efforts to reveal missing physics, improve modeling capabilities, and deploy new observational assets. New understanding should be targeted to accurately quantify solar wind driving, magnetosphere-ionosphere-thermosphere coupling, and the impacts on specific technologies. The research, modeling, and observations highlighted here provide a framework for constructing a plan by which the international science community can comprehensively address the growing threat to human technologies caused by geomagnetic disturbances. 
    more » « less
  4. The operation of the electric power grid is foundational to the health, safety, and economic well-being of the nation, yet it is increasingly fragile and exposed to risk from exogenous factors. When power disruptions are widespread, prolonged, or impact critical services, the consequences can be grave. GMDs) can impact electric power transmission grids through premature ageing and transformer failure, which can lead to cascading failures and extended power disruptions. Geomagnetically induced currents (GICs) arising from geomagnetic disturbances (GMD mitigation poses a challenging problem to grid operators due to the nature of its impact. Space weather events arising from solar coronal mass ejections (CMEs) that intersect Earth's orbit occur on a continuum of timescales and levels of severity. Moderately sized CMEs, such as the 1989 event that lead to the failure of the HydroQuebec system, illustrate the risk to the power grid. Even larger space weather events that have the potential for profound impacts and prolonged power disruptions on a continental scale are thought to happen approximately storm has occurred during the existence of electric infrastructure. At the other end of the severity spectrum, recent evidence has shown that GICs flow at low levels continuously on the grid even in the every one hundred years; however, no such absence of a solar storm. This behavior may cause eventual, but slow to manifest breakdown of grid assets misattributed to non-GMD causes. In either case, it is difficult for utilities to justify the costly installation of sensors and telemetry to monitor this phenomenon. This paper details a system to augment human operators with two new abilities—(1) the real-time prediction of GICs flowing on their system and (2) the real-time monitoring of GMD grid manifestations—without installing new sensors. The system will do this by fusing a “top-down” approach using physics-based modeling driven by detailed 3-D Earth conductivity measurements and real-time magnetic observatory data with a “bottom-up” approach using artificial intelligence techniques driven by synchrophasor data. This hybrid methodology will enable utility operators to identify the best strategies to modify grid voltages and topology to mitigate damage and deal with a changing federal regulatory framework that requires GMD monitoring and mitigation efforts. 
    more » « less
  5. Abstract EUropean Heliospheric FORecasting Information Asset (EUHFORIA) is a physics‐based data‐driven solar wind and coronal mass ejections (CMEs) propagation model designed for space weather forecasting and event analysis investigations. Although EUHFORIA can predict the solar wind plasma and magnetic field properties at Earth, it is not equipped to quantify the geo‐effectiveness of the solar transients in terms of geomagnetic indices like the disturbance storm time (Dst) index and the auroral indices, that quantify the impact of the magnetized plasma encounters on Earth's magnetosphere. Therefore, we couple EUHFORIA with the Open Geospace General Circulation Model (OpenGGCM), a magnetohydrodynamic model of the response of Earth's magnetosphere, ionosphere, and thermosphere to transient solar wind characteristics. In this coupling, OpenGGCM is driven by the solar wind and interplanetary magnetic field obtained from EUHFORIA simulations to produce the magnetospheric and ionospheric response to the CMEs. This coupling is validated with two observed geo‐effective CME events driven with the spheromak flux‐rope CME model. We compare these simulation results with the indices obtained from OpenGGCM simulations driven by the measured solar wind data from spacecraft. We further employ the dynamic time warping (DTW) technique to assess the model performance in predicting Dst. The main highlight of this study is to use EUHFORIA simulated time series to predict the Dst and auroral indices 1–2 days in advance, as compared to using the observed solar wind data at L1, which only provides predictions 1–2 hr before the actual impact. 
    more » « less