Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 ‘Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)’ and 103 ‘Combining Medications to Enhance Depression Outcomes (CO-MED)’ patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with ( N = 46) and without ( N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL -associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
more »
« less
Selective Serotonin Reuptake Inhibitor Pharmaco-Omics: Mechanisms and Prediction
Selective serotonin reuptake inhibitors (SSRIs) are a standard of care for the pharmacotherapy of patients suffering from Major Depressive Disorder (MDD). However, only one-half to two-thirds of MDD patients respond to SSRI therapy. Recently, a “multiple omics” research strategy was applied to identify genetic differences between patients who did and did not respond to SSRI therapy. As a first step, plasma metabolites were assayed using samples from the 803 patients in the PGRN-AMPS SSRI MDD trial. The metabolomics data were then used to “inform” genomics by performing a genome-wide association study (GWAS) for plasma concentrations of the metabolite most highly associated with clinical response, serotonin (5-HT). Two genome-wide or near genome-wide significant single nucleotide polymorphism (SNP) signals were identified, one that mapped near the TSPAN5 gene and another across the ERICH3 gene, both genes that are highly expressed in the brain. Knocking down TSPAN5 and ERICH3 resulted in decreased 5-HT concentrations in neuroblastoma cell culture media and decreased expression of enzymes involved in 5-HT biosynthesis and metabolism. Functional genomic studies demonstrated that ERICH3 was involved in clathrin-mediated vesicle formation and TSPAN5 was an ethanol-responsive gene that may be a marker for response to acamprosate pharmacotherapy of alcohol use disorder (AUD), a neuropsychiatric disorder highly co-morbid with MDD. In parallel studies, kynurenine was the plasma metabolite most highly associated with MDD symptom severity and application of a metabolomics-informed pharmacogenomics approach identified DEFB1 and AHR as genes associated with variation in plasma kynurenine levels. Both genes also contributed to kynurenine-related inflammatory pathways. Finally, a multiply replicated predictive algorithm for SSRI clinical response with a balanced predictive accuracy of 76% (compared with 56% for clinical data alone) was developed by including the SNPs in TSPAN5 , ERICH3 , DEFB1 and AHR . In summary, application of a multiple omics research strategy that used metabolomics to inform genomics, followed by functional genomic studies, identified novel genes that influenced monoamine biology and made it possible to develop a predictive algorithm for SSRI clinical outcomes in MDD. A similar pharmaco-omic research strategy might be broadly applicable for the study of other neuropsychiatric diseases and their drug therapy.
more »
« less
- Award ID(s):
- 2041339
- PAR ID:
- 10285294
- Date Published:
- Journal Name:
- Frontiers in Pharmacology
- Volume:
- 11
- ISSN:
- 1663-9812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (more » « less
-
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.more » « less
-
ABSTRACT Pharmacogenetics is a promising strategy to facilitate individualized care for patients with Major Depressive Disorder (MDD). Research is ongoing to identify the optimal genetic markers for predicting outcomes to antidepressant therapies. The primary aim of this systematic review was to summarize antidepressant pharmacogenetic studies to enhance understanding of the genes, variants, datatypes/methodologies, and outcomes investigated in the context of MDD. The secondary aim was to identify clinical genetic panels indicated for antidepressant prescribing and summarize their genes and variants. Screening ofN = 5793 articles yieldedN = 390 for inclusion, largely comprising adult (≥ 18 years) populations. Top‐studied variants identified in the search were discussed and compared with those represented on theN = 34 clinical genetic panels that were identified. Summarization of articles revealed sources of heterogeneity across studies and low rates of replicability of pharmacogenetic associations. Heterogeneity was present in outcome definitions, treatment regimens, and differential inclusion of mediating variables in analyses. Efficacy outcomes (i.e., response, remission) were studied at greater frequency than adverse‐event outcomes. Studies that used advanced analytical approaches, such as machine learning, to integrate variants with complimentary biological datatypes were fewer in number but achieved higher rates of significant associations with treatment outcomes than candidate variant approaches. As large biological datasets become more prevalent, machine learning will be an increasingly valuable tool for parsing the complexity of antidepressant response. This review provides valuable context and considerations surrounding pharmacogenetic associations in MDD which will help inform future research and translation efforts for guiding antidepressant care.more » « less
-
null (Ed.)Abstract Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3 , raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.more » « less
An official website of the United States government

