skip to main content


Title: Eye-Track Modeling of Problem-Solving in Virtual Manufacturing Environments
Problem-solving focuses on defining and analyzing problems, then finding viable solutions through an iterative process that requires brainstorming and understanding of what is known and what is unknown in the problem space. With rapid changes of economic landscape in the United States, new types of jobs emerge when new industries are created. Employers report that problem-solving is the most important skill they are looking for in job applicants. However, there are major concerns about the lack of problem-solving skills in engineering students. This lack of problem-solving skills calls for an approach to measure and enhance these skills. In this research, we propose to understand and improve problem-solving skills in engineering education by integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a manufacturing system in a VR game environment that we call a VR learning factory. The VR learning factory is built in the Unity game engine with the HTC Vive VR system for navigation and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing the system to identify the coordinates and objects that a user is looking at, at any given time during the simulation. In the environment, engineering students can see through the headset a virtual manufacturing environment composed of a series of workstations and are able to interact with workpieces in the virtual environment. For example, a student can pick up virtual plastic bricks and assemble them together using the wireless controller in hand. Second, engineering students are asked to design and assemble car toys that satisfy predefined customer requirements while minimizing the total cost of production. Third, data-driven models are developed to analyze eye-movement patterns of engineering students. For instance, problem-solving skills are measured by the extent to which the eye-movement patterns of engineering students are similar to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for the car toy assembly process. Benchmark experiments are conducted with a comprehensive measure of performance metrics such as cycle time, the number of station switches, weight, price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient and effective to measure problem-solving skills of engineering students. The proposed VR learning factory was integrated into undergraduate manufacturing courses to enhance student learning and problem-solving skills.  more » « less
Award ID(s):
1830741
NSF-PAR ID:
10285346
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference proceedings
ISSN:
1524-4857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less
  2. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less
  3. null (Ed.)
    Like many natural sciences, a critical component of archaeology is field work. Despite its importance, field opportunities are available to few students for financial and logistical reasons. With little exposure to archaeological research, fewer students are entering archaeology, particularly minority students (Smith 2004; Wilson 2015). To counter these trends, we have leveraged the ongoing revolution in consumer electronics for the current, digitally-empowered generation by creating a game-based, virtual archaeology curriculum to 1) teach foundational principles of a discipline that is challenging to present in a traditional classroom by using sensory and cognitive immersion; and, 2) allow wider access to a field science that has previously been limited to only select students. Virtual reality (VR) is computer technology that creates a simulated three-dimensional world for a user to experience in a bodily way, thereby transforming data analysis into a sensory and cognitive experience. Using a widely-available, room-scale, VR platform, we have created a virtual archaeological excavation experience that conveys two overarching classroom objectives: 1) teach the physical methods of archaeological excavation by providing the setting and tools for a student to actively engage in field work; and, 2) teach archaeological concepts using a scientific approach to problem solving by couching them within a role-playing game. The current prototype was developed with the HTC Vive VR platform, which includes a headset, hand controllers, and two base stations to track the position and orientation of the user’s head and hands within a 4x4 meter area. Environments were developed using Unreal Engine 4, an open source gaming engine, to maximize usability for different audiences, learning objectives, and skill levels. Given the inherent fun of games and widespread interest in archaeology and cultural heritage, the results of this research are adaptable and applicable to learners of all ages in formal and informal educational settings. 
    more » « less
  4. Engineering education aims to create a learning environment capable of developing vital engineering skill sets, preparing students to enter the workforce and succeed as future leaders. With all the rapid technological advancements, new engineering challenges continuously emerge, impeding the development of engineering skills. This insufficiency in developing the required skills resulted in high regression rates in students’ GPAs, resulting in industries reporting graduates’ unsatisfactory performance. From a pedagogical perspective, this problem is highly correlated with traditional learning methods that are inadequate for engaging students and improving their learning experience when adopted alone. Accordingly, educators have incorporated new learning methodologies to address the pre-defined problem and enhance the students’ learning experience. However, many of the currently adopted teaching methods still lack the potential to expose students to practical examples, and they are inefficient among engineering students, who tend to be active learners and prefer to use a variety of senses. To address this, our research team proposes integrating the technology of virtual reality (VR) into the laboratory work of engineering technology courses to improve the students’ learning experience and engagement. VR technology, an immersive high-tech media, was adopted to develop an interactive teaching module on hydraulic gripper designs in a VR construction-like environment. The module aims to expose engineering technology students to real-life applications by providing a more visceral experience than screen-based media through the generation of fully computer-simulated environments in which everything is digitized. This work presents the development and implementation of the VR construction lab module and the corresponding gripper designs. The virtual gripper models are developed using Oculus Virtual Reality (OVR) Metrics Tool for Unity, a Steam VR Overlay utility created to make visualizing the desktop in a VR setting simple and intuitive. The execution of the module comprises building the VR environment, designing and importing the gripper models, and creating a user-interface VR environment to visualize and interact with the model (gripper assembly/mechanism testing). Besides the visualization, manipulation, and interaction, the developed VR system allows for additional features like displaying technical information, guiding students throughout the assembly process, and other specialized options. Thus, the developed interactive VR module will serve as a perpetual mutable platform that can be readily adjusted to allow future add-ons to address future educational opportunities. 
    more » « less
  5. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less