skip to main content


Title: Assise: Performance and Availability via Client-local NVM in a Distributed File System
The adoption of low latency persistent memory modules (PMMs) upends the long-established model of remote storage for distributed file systems. Instead, by colocating computation with PMM storage, we can provide applications with much higher IO performance, sub-second application failover, and strong consistency. To demonstrate this, we built the Assise distributed file system, based on a persistent, replicated coherence protocol that manages client-local PMM as a linearizable and crash-recoverable cache between applications and slower (and possibly remote) storage. Assise maximizes locality for all file IO by carrying out IO on process-local, socket-local, and client-local PMM whenever possible. Assise minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes. We compare Assise to Ceph/BlueStore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for common cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22x, throughput up to 56x, fail-over time up to 103x, and scales up to 6x better than its counterparts, while providing stronger consistency semantics.  more » « less
Award ID(s):
1900457
NSF-PAR ID:
10285415
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20)
Page Range / eLocation ID:
1011 - 1027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current hardware and application storage trends put immense pressure on the operating system's storage subsystem. On the hardware side, the market for storage devices has diversified to a multi-layer storage topology spanning multiple orders of magnitude in cost and performance. Above the file system, applications increasingly need to process small, random IO on vast data sets with low latency, high throughput, and simple crash consistency. File systems designed for a single storage layer cannot support all of these demands together. We present Strata, a cross-media file system that leverages the strengths of one storage media to compensate for weaknesses of another. In doing so, Strata provides performance, capacity, and a simple, synchronous IO model all at once, while having a simpler design than that of file systems constrained by a single storage device. At its heart, Strata uses a log-structured approach with a novel split of responsibilities among user mode, kernel, and storage layers that separates the concerns of scalable, high-performance persistence from storage layer management. We quantify the performance benefits of Strata using a 3-layer storage hierarchy of emulated NVM, a flash-based SSD, and a high-density HDD. Strata has 20-30% better latency and throughput, across several unmodified applications, compared to file systems purpose-built for each layer, while providing synchronous and unified access to the entire storage hierarchy. Finally, Strata achieves up to 2.8x better throughput than a block-based 2-layer cache provided by Linux's logical volume manager. 
    more » « less
  2. null (Ed.)
    Persistent main memory (PM) dramatically improves IO performance. We find that this results in file systems on PM spending as much as 70% of the IO path performing file mapping (mapping file offsets to physical locations on storage media) on real workloads. However, even PM-optimized file systems perform file mapping based on decades-old assumptions. It is now critical to revisit file mapping for PM. We explore the design space for PM file mapping by building and evaluating several file-mapping designs, including different data structure, caching, as well as meta-data and block allocation approaches, within the context of a PM-optimized file system. Based on our findings, we design HashFS, a hash-based file mapping approach. HashFS uses a single hash operation for all mapping and allocation operations, bypassing the file system cache, instead prefetching mappings via SIMD parallelism and caching translations explicitly. HashFS’s resulting low latency provides superior performance compared to alternatives. HashFS increases the throughput of YCSB on LevelDB by up to 45% over page-cached extent trees in the state-of-the-art Strata PM-optimized file system 
    more » « less
  3. Consistency in data storage systems requires any read operation to return the most recent written version of the content. In replicated storage systems, consistency comes at the price of delay due to large-scale write and read operations. Many applications with low latency requirements tolerate data staleness in order to provide high availability and low operation latency. Using age of information as the staleness metric, we examine a data updating system in which real-time content updates are replicated and stored in a Dynamo-style quorum-based distributed system. A source sends updates to all the nodes in the system and waits for acknowledgements from the earliest subset of nodes, known as a write quorum. An interested client fetches the update from another set of nodes, defined as a read quorum. We analyze the staleness-delay tradeoff in replicated storage by varying the write quorum size. With a larger write quorum, an instantaneous read is more likely to get the latest update written by the source. However, the age of the content written to the system is more likely to become stale as the write quorum size increases. For shifted exponential distributed write delay, we derive the age optimized write quorum size that balances the likelihood of reading the latest update and the freshness of the latest update written by the source. 
    more » « less
  4. null (Ed.)
    We present POSH, a framework that accelerates shell applications with I/O-heavy components, such as data analytics with command-line utilities. Remote storage such as networked filesystems can severely limit the performance of these applications: data makes a round trip over the network for relatively little computation at the client. Reducing the data movement by moving the code to the data can improve performance. POSH automatically optimizes unmodified I/O-intensive shell applications running over remote storage by offloading the I/O-intensive portions to proxy servers closer to the data. A proxy can run directly on a storage server, or on a machine closer to the storage layer than the client. POSH intercepts shell pipelines and uses metadata called annotations to decide where to run each command within the pipeline. We address three principal challenges that arise: an annotation language that allows POSH to understand which files a command will access, a scheduling algorithm that places commands to minimize data movement, and a system runtime to execute a distributed schedule but retain local semantics. We benchmark POSH on real shell pipelines such as image processing, network security analysis, log analysis, distributed system debugging, and git. We find that POSH provides speedups ranging from 1.6× to 15× compared to NFS, without requiring any modifications to the applications. 
    more » « less
  5. null (Ed.)
    We consider the setting of serverless Function-as-a-Service (FaaS) platforms, where storage services are disaggregated from the machines that support function execution. FaaS applications consist of compositions of functions, each of which may run on a separate machine and access remote storage. The challenge we address is improving I/O latency in this setting while also providing application-wide consistency. Previous work has explored providing causal consistency for individual I/Os by carefully managing the versions stored in a client-side data cache. In our setting, a single application may execute multiple functions across different nodes, and therefore issue interrelated I/Os to multiple distinct caches. This raises the challenge of Multisite Transactional Causal Consistency (MTCC): the ability to provide causal consistency for all I/Os within a given transaction even if it runs across multiple physical sites. We present protocols for MTCC implemented in a system called HYDROCACHE. Our evaluation demonstrates orders-of-magnitude performance improvements due to caching, while also protecting against consistency anomalies that otherwise arise frequently. 
    more » « less