This work presents a prototype of a wireless, flexible, self-powered sensor used to analyze head impact kinematics relevant to concussions, which are frequent in high contact sports. Two untethered, paper-thin, and flexible sensing devices with piezoelectric-like behavior are placed around the neck of a human head substitute and used to monitor stress/strain in this region during an impact. The mechanical energy exerted by an impact force –varied in locations and magnitudes– is converted to pulses of electric energy which are transmitted wirelessly to a smart device for storage and analysis. The wireless prototype system is presented using a microcontroller with an integrated Bluetooth Low Energy module. The static and dynamic characteristics of the transmitted signal are then compared to signals from accelerometers embedded in a head substitute, to map the sensor’s output to the angular velocity and acceleration during impacts. It is demonstrated that using only two sensors is enough to detect impacts coming from any direction; and that placing multiple external sensors around the neck region could provide accurate information on the dynamics of the head, during a collision, which other sensors fail to capture.
more »
« less
Head motion classification using thread-based sensor and machine learning algorithm
Abstract Human machine interfaces that can track head motion will result in advances in physical rehabilitation, improved augmented reality/virtual reality systems, and aid in the study of human behavior. This paper presents a head position monitoring and classification system using thin flexible strain sensing threads placed on the neck of an individual. A wireless circuit module consisting of impedance readout circuitry and a Bluetooth module records and transmits strain information to a computer. A data processing algorithm for motion recognition provides near real-time quantification of head position. Incoming data is filtered, normalized and divided into data segments. A set of features is extracted from each data segment and employed as input to nine classifiers including Support Vector Machine, Naive Bayes and KNN for position prediction. A testing accuracy of around 92% was achieved for a set of nine head orientations. Results indicate that this human machine interface platform is accurate, flexible, easy to use, and cost effective.
more »
« less
- PAR ID:
- 10285433
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human-robot collaboration systems benefit from recognizing people’s intentions. This capability is especially useful for collaborative manipulation applications, in which users operate robot arms to manipulate objects. For collaborative manipulation, systems can determine users’ intentions by tracking eye gaze and identifying gaze fixations on particular objects in the scene (i.e., semantic gaze labeling). Translating 2D fixation locations (from eye trackers) into 3D fixation locations (in the real world) is a technical challenge. One approach is to assign each fixation to the object closest to it. However, calibration drift, head motion, and the extra dimension required for real-world interactions make this position matching approach inaccurate. In this work, we introduce velocity features that compare the relative motion between subsequent gaze fixations and a finite set of known points and assign fixation position to one of those known points. We validate our approach on synthetic data to demonstrate that classifying using velocity features is more robust than a position matching approach. In addition, we show that a classifier using velocity features improves semantic labeling on a real-world dataset of human-robot assistive manipulation interactions.more » « less
-
Human-robot collaboration systems benefit from recognizing people’s intentions. This capability is especially useful for collaborative manipulation applications, in which users operate robot arms to manipulate objects. For collaborative manipulation, systems can determine users’ intentions by tracking eye gaze and identifying gaze fixations on particular objects in the scene (i.e., semantic gaze labeling). Translating 2D fixation locations (from eye trackers) into 3D fixation locations (in the real world) is a technical challenge. One approach is to assign each fixation to the object closest to it. However, calibration drift, head motion, and the extra dimension required for real-world interactions make this position matching approach inaccurate. In this work, we introduce velocity features that compare the relative motion between subsequent gaze fixations and a nite set of known points and assign fixation position to one of those known points. We validate our approach on synthetic data to demonstrate that classifying using velocity features is more robust than a position matching approach. In addition, we show that a classifier using velocity features improves semantic labeling on a real-world dataset of human-robot assistive manipulation interactions.more » « less
-
Modern robotics heavily relies on machine learning and has a growing need for training data. Advances and commercialization of virtual reality (VR) present an opportunity to use VR as a tool to gather such data for human-robot interactions. We present the Robot Interaction in VR simulator, which allows human participants to interact with simulated robots and environments in real-time. We are particularly interested in spoken interactions between the human and robot, which can be combined with the robot's sensory data for language grounding. To demonstrate the utility of the simulator, we describe a study which investigates whether a user's head pose can serve as a proxy for gaze in a VR object selection task. Participants were asked to describe a series of known objects, providing approximate labels for the focus of attention. We demonstrate that using a concept of gaze derived from head pose can be used to effectively narrow the set of objects that are the target of participants' attention and linguistic descriptions.more » « less
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localizationmore » « less
An official website of the United States government

