skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Linear Behavior of the Phase Lifetime in Frequency-Domain Fluorescence Lifetime Imaging of FRET Constructs
We utilize a cost-effective frequency-domain fluorescence lifetime imaging microscope to measure the phase lifetime of mTFP1 in mTFP1-mVenus fluorescence resonance energy transfer (FRET) constructs relevant to the VinTS molecular tension probe. Our data were collected at 15 modulation frequencies ω/2π selected between 14 and 70 MHz. The lifetime of mTFP1 was τ D = 3.11 ± 0.02 ns in the absence of acceptor. For modulation frequencies, ω, such that (ω · τ D ) < 1.1, the phase lifetime of mTFP1in the presence of acceptor (mVenus), τ ϕ D A , was directly related to the amplitude-weighted lifetime τ a v e D A inferred from the known FRET efficiency ( E FRET true ) of the constructs. A linear fit to a plot of ( ω · τ ϕ D A )   v s .   ( ω · τ a v e D A )   yielded a slope of 0.79 ± 0.05 and intercept of 0.095 ± 0.029 (R 2 = 0.952). Thus, our results suggest that a linear relationship exists between the apparent E FRET app based on the measured phase lifetime and E FRET true for frequencies such that (ω · τ D ) < 1.1. We had previously reported a similar relationship between E FRET app and E FRET true at 42 MHz. Our current results provide additional evidence in support of this observation, but further investigation is still required to fully characterize these results. A direct relationship between τ ϕ D A and τ a v e D A has the potential to simplify significantly data acquisition and interpretation in fluorescence lifetime measurements of FRET constructs.  more » « less
Award ID(s):
1825433
PAR ID:
10285501
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
9
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τ D and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E–τ D diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines. 
    more » « less
  2. Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study. 
    more » « less
  3. Aims. We analyze the behavior of the argument of pericenter ω 2 of an outer particle in the elliptical restricted three-body problem, focusing on the ω 2 resonance or inverse Lidov-Kozai resonance. Methods. First, we calculated the contribution of the terms of quadrupole, octupole, and hexadecapolar order of the secular approximation of the potential to the outer particle’s ω 2 precession rate (d ω 2 ∕d τ ). Then, we derived analytical criteria that determine the vanishing of the ω 2 quadrupole precession rate (d ω 2 /d τ ) quad for different values of the inner perturber’s eccentricity e 1 . Finally, we used such analytical considerations and described the behavior of ω 2 of outer particles extracted from N-body simulations developed in a previous work. Results. Our analytical study indicates that the values of the inclination i 2 and the ascending node longitude Ω 2 associated with the outer particle that vanish (d ω 2 /d τ ) quad strongly depend on the eccentricity e 1 of the inner perturber. In fact, if e 1 < 0.25 (>0.40825), (d ω 2 /d τ ) quad is only vanished for particles whose Ω 2 circulates (librates). For e 1 between 0.25 and 0.40825, (d ω 2 /d τ ) quad can be vanished for any particle for a suitable selection of pairs (Ω 2 , i 2 ). Our analysis of the N-body simulations shows that the inverse Lidov-Kozai resonance is possible for small, moderate, and high values of e 1 . Moreover, such a resonance produces distinctive features in the evolution of a particle in the (Ω 2 , i 2 ) plane. In fact, if ω 2 librates and Ω 2 circulates, the extremes of i 2 at Ω 2 = 90° and 270° do not reach the same value, while if ω 2 and Ω 2 librate, the evolutionary trajectory of the particle in the (Ω 2 , i 2 ) plane shows evidence of an asymmetry with respect to i 2 = 90°. The evolution of ω 2 associated with the outer particles of the N-body simulations can be very well explained by the analytical criteria derived in our investigation. 
    more » « less
  4. A bstract Charged-lepton-flavor-violation is predicted in several new physics scenarios. We update the analysis of τ lepton decays into a light charged lepton ( ℓ = e ± or μ ± ) and a vector meson ( V 0 = ρ 0 , ϕ , ω , K *0 , or $$ \overline{K} $$ K ¯ *0 ) using 980 fb − 1 of data collected with the Belle detector at the KEKB collider. No significant excess of such signal events is observed, and thus 90% credibility level upper limits are set on the τ → ℓV 0 branching fractions in the range of (1.7–4 . 3) × 10 − 8 . These limits are improved by 30% on average from the previous results. 
    more » « less
  5. Abstract Fӧrster (or fluorescence) resonance energy transfer (FRET) is a quantifiable energy transfer in which a donor fluorophore nonradiatively transfers its excitation energy to an acceptor fluorophore. A change in FRET efficiency indicates a change of proximity and environment of these fluorophores, which enables the study of intermolecular interactions. Measurement of FRET efficiency using the sensitized emission method requires a donor–acceptor calibrated system. One of these calibration factors named theGfactor, which depends on instrument parameters related to the donor and acceptor measurement channels and on the fluorophores quantum efficiencies, can be determined in several different ways and allows for conversion of the raw donor and acceptor emission signals to FRET efficiency. However, the calculated value of the G factor from experimental data can fluctuate significantly depending on the chosen experimental method and the size of the sample. In this technical note, we extend the results of Gates et al. (Cytometry Part A 95A (2018) 201–213) by refining the calibration method used for calibration of FRET from image pixel data. Instead of using the pixel histograms of two constructs with high and low FRET efficiency to determine theGfactor, we use pixel histogram data from one construct of known efficiency. We validate this method by determining theGfactor with the same constructs developed and used by Gates et al. and comparing the results from the two approaches. While the two approaches are equivalent theoretically, we demonstrate that the use of a single construct with known efficiency provides a more precise experimental measurement of theGfactor that can be attained by collecting a smaller number of images. © 2020 International Society for Advancement of Cytometry 
    more » « less