skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems
Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.  more » « less
Award ID(s):
1632899
PAR ID:
10285548
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
13
Issue:
10
ISSN:
2071-1050
Page Range / eLocation ID:
5612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extracellular enzymes play a key role in microbe‐mediated organic matter decomposition in soils, and the efficiency of these enzymes in substrate decomposition depends on their mobility and specific activity in soils. In this work, we explored the influence of biochar adsorption on extracellular enzyme activity across a spectrum of environmental conditions, from simple to complex. Batch adsorption results showed that biochar adsorption of two hydrolytic enzymes—α‐amylase and amyloglucosidase (AMG)—similarly decreases with pH and follows the Langmuir isotherm, suggesting electrostatic interaction between them. Activity of AMG and alkaline phosphatase (ALP), which belong to carbon and phosphorus cycling enzymes, was measured using a novel calorimetric method. The technique demonstrated advantages over conventional enzyme assays, such as in situ real‐time measurement of reaction rate and the ability to identify potential interferences. The technique enabled the measurement of specific activity of biochar‐adsorbed AMG, which ranged from 10% to 90% of that of free AMG. The effect of substrate adsorption on activity measurement was demonstrated through the examination of two substrates for ALP, which suggested the use of effective substrate concentration (instead of nominal concentration) in calculating enzyme activity kinetics. Soil column experiments showed that biochar amendment can affect the activity of AMG in starch hydrolysis through changing the mobility of AMG (and accessibility to substrate) and its specific activity. Results from this work improve our understanding of the effects of biochar adsorption on enzyme activity and suggest the need to appropriately interpret enzyme activity data and account for confounding processes. 
    more » « less
  2. Abstract Biochar is well-accepted as a viable climate mitigation strategy to promote agricultural and environmental benefits such as soil carbon sequestration and crop productivity while reducing greenhouse gas emissions. However, its effects on soil microbial biomass carbon (SMBC) in field experiments have not yet been thoroughly explored. In this study, we collected 539 paired globally published observations to study the impacts of biochar on SMBC under field experiments. Our results suggested an overall positive impact of biochar (21.31%) on SMBC, varying widely with different climate conditions, soil types, biochar properties, and management practices. Biochar application exhibits significant impacts under climates with mean annual temperature (MAT) < 15 °C and mean annual precipitation (MAP) between 500 and 1000 mm. Soils of coarse and fine texture, alkaline pH (SPH), soil total organic carbon (STC) content up to 10 g/kg, soil total nitrogen (STN) content up to 1.5 g/kg, and low soil cation exchange capacity (SCEC) content of < 5 cmol/kg received higher positive effects of biochar application on SMBC. Biochar produced from crop residue, specifically from cotton and maize residue, at pyrolysis temperature (BTM) of < 400 °C, with a pH (BPH) between 8 and 9, low application rate (BAP) of < 10 t/ha, and high ash content (BASH) > 400 g/kg resulted in an increase in SMBC. Low biochar total carbon (BTC) and high total nitrogen (BTN) positively affect the SMBC. Repeated application significantly increased the SMBC by 50.11%, and fresh biochar in the soil (≤ 6 months) enhanced SMBC compared to the single application and aged biochar. Biochar applied with nitrogen fertilizer (up to 300 kg/ha) and manure/compost showed significant improvements in SMBC, but co-application with straw resulted in a slight negative impact on the SMBC. The best-fit gradient boosting machines model, which had the lowest root mean square error, demonstrated the relative importance of various factors on biochar effectiveness: biochar, soil, climate, and nitrogen applications at 46.2%, 38.1%, 8.3%, and 7.4%, respectively. Soil clay proportion, BAP, nitrogen application, and MAT were the most critical variables for biochar impacts on SMBC. The results showed that biochar efficiency varies significantly in different climatic conditions, soil environments, field management practices, biochar properties, and feedstock types. Our meta-analysis of field experiments provides the first quantitative review of biochar impacts on SMBC, demonstrating its potential for rehabilitating nutrient-deprived soils and promoting sustainable land management. To improve the efficiency of biochar amendment, we call for long-term field experiments to measure SMBC across diverse agroecosystems. Graphical Abstract 
    more » « less
  3. ABSTRACT: Biochar has been proposed as a soil amendment in agricultural applications due to its advantageous adsorptive properties, high porosity, and low cost. These properties allow biochar to retain soil nutrients, yet the effects of biochar on bacterial growth remain poorly understood. To examine how biochar influences microbial metabolism, Escherichia coli was grown in a complex, well-defined media and treated with either biochar or activated carbon. The concentration of metabolites in the media were then quantified at several time points using NMR spectroscopy. Several metabolites were immediately adsorbed by the char, including L-asparagine, L-glutamine, and L-arginine. However, we find that biochar quantitatively adsorbs less of these metabolic precursors when compared to activated carbon. Electron microscopy reveals differences in surface morphology after cell culture, suggesting that Escherichia coli can form biofilms on the surfaces of the biochar. An examination of significant compounds in the tricarboxylic acid cycle and glycolysis reveals that treatment with biochar is less disruptive than activated carbon throughout metabolism. While both biochar and activated carbon slowed growth compared to untreated media, Escherichia coli in biochartreated media grew more efficiently, as indicated by a longer logarithmic growth phase and a higher final cell density. This work suggests that biochar can serve as a beneficial soil amendment while minimizing the impact on bacterial viability. In addition, the experiments identify a mechanism for biochar’s effectiveness in soil conditioning and reveal how biochar can alter specific bacterial metabolic pathways. 
    more » « less
  4. Nitrogen and fecal indicator bacteria (FIB) in runoff from concentrated animal feeding operations (CAFOs) can impair surface and groundwater quality. Bioretention systems are low impact nature-based technologies that can effectively treat CAFO runoff if modified with an internal water storage zone (IWSZ) or amended with biochar. In this study, the performances of four pilot-scale modified bioretention systems were compared to assess the impacts of (1) amending bioretention media with biochar and (2) planting the systems with Muhlenbergia. The system with both plants and biochar amendment had the best performance, with an average of 5.58 log reduction in E. coli and 98% removal of total nitrogen (TN). All systems treated the first pore volume well as new runoff flushed the treated water from the IWSZ. Biochar improved TN and FIB removal due to its high capacity to adsorb or retain ammonium (NH4+), dissolved organic nitrogen, dissolved organic carbon, and E. coli. Planting improved performance, possibly by increasing rhizosphere microbial activity. 
    more » « less
  5. Peña-Fernández, Antonio (Ed.)
    Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600–700 mg POXC kg -1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg -1 ) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil’s resilience to changing climate. 
    more » « less