Deep learning models have demonstrated significant advantages over traditional algorithms in image processing tasks like object detection. However, a large amount of data are needed to train such deep networks, which limits their application to tasks such as biometric recognition that require more training samples for each class (i.e., each individual). Researchers developing such complex systems rely on real biometric data, which raises privacy concerns and is restricted by the availability of extensive, varied datasets. This paper proposes a generative adversarial network (GAN)-based solution to produce training data (palm images) for improved biometric (palmprint-based) recognition systems. We investigate the performance of the most recent StyleGAN models in generating a thorough contactless palm image dataset for application in biometric research. Training on publicly available H-PolyU and IIDT palmprint databases, a total of 4839 images were generated using StyleGAN models. SIFT (Scale-Invariant Feature Transform) was used to find uniqueness and features at different sizes and angles, which showed a similarity score of 16.12% with the most recent StyleGAN3-based model. For the regions of interest (ROIs) in both the palm and finger, the average similarity scores were 17.85%. We present the Frechet Inception Distance (FID) of the proposed model, which achieved a 16.1 score, demonstrating significant performance. These results demonstrated StyleGAN as effective in producing unique synthetic biometric images.
more »
« less
Why Temporal Persistence of Biometric Features, as Assessed by the Intraclass Correlation Coefficient, Is So Valuable for Classification Performance
It is generally accepted that relatively more permanent (i.e., more temporally persistent) traits are more valuable for biometric performance than less permanent traits. Although this finding is intuitive, there is no current work identifying exactly where in the biometric analysis temporal persistence makes a difference. In this paper, we answer this question. In a recent report, we introduced the intraclass correlation coefficient (ICC) as an index of temporal persistence for such features. Here, we present a novel approach using synthetic features to study which aspects of a biometric identification study are influenced by the temporal persistence of features. What we show is that using more temporally persistent features produces effects on the similarity score distributions that explain why this quality is so key to biometric performance. The results identified with the synthetic data are largely reinforced by an analysis of two datasets, one based on eye-movements and one based on gait. There was one difference between the synthetic and real data, related to the intercorrelation of features in real data. Removing these intercorrelations for real datasets with a decorrelation step produced results which were very similar to that obtained with synthetic features.
more »
« less
- Award ID(s):
- 1714623
- PAR ID:
- 10285747
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 20
- Issue:
- 16
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 4555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many developers of biometric systems start with modest samples before general deployment. However, they are interested in how their systems will work with much larger samples. To assist them, we evaluated the effect of gallery size on biometric performance. Identification rates describe the performance of biometric identification, whereas ROC-based measures describe the performance of biometric authentication (verification). Therefore, we examined how increases in gallery size affected identification rates (i.e., Rank-1 Identification Rate, or Rank-1 IR) and ROC-based measures such as equal error rate (EER). We studied these phenomena with synthetic data as well as real data from a face recognition study. It is well known that the Rank-1 IR declines with increasing gallery size, and that the relationship is linear against log(gallery size). We have confirmed this with synthetic and real data. We have shown that this decline can be counteracted with the inclusion of additional information (features) for larger gallery sizes. We have also described the curves which can be used to predict how much additional information would be required to stabilize the Rank-1 IR as a function of gallery size. These equations are also linear in log(gallery size). We have also shown that the entire ROC-curve was not systematically affected by gallery size, and so ROC-based scalar performance metrics such as EER are also stable across gallery size. Unsurprisingly, as additional uncorrelated features are added to the model, EER decreases. We were interested in determining the impact of adding more features on the median, spread and shape of similarity score distributions. We present evidence that these decreases in EER are driven primarily by decreases in the spread of the impostor similarity score distribution.more » « less
-
1-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study 2-parameter persistence modules induced by bi-filtration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules. We show that this vector representation is 1-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of 1-parameter and 2-parameter persistence modules. Further, we augment GNNs with GRIL features and observe an increase in performance indicating that GRIL can capture additional features enriching GNNs. We make the complete code for the proposed method available at https://github.com/soham0209/mpml-graph.more » « less
-
Temporal text data, such as news articles or Twitter feeds, often comprises a mixture of long-lasting trends and transient topics. Effective topic modeling strategies should detect both types and clearly locate them in time. We first demonstrate that nonnegative CANDECOMP/PARAFAC decomposition (NCPD) can automatically identify topics of variable persistence. We then introduce sparseness-constrained NCPD (S-NCPD) and its online variant to control the duration of the detected topics more effectively and efficiently, along with theoretical analysis of the proposed algorithms. Through an extensive study on both semi-synthetic and real-world datasets, we find that our S-NCPD and its online variant can identify both short- and long-lasting temporal topics in a quantifiable and controlled manner, which traditional topic modeling methods are unable to achieve. Additionally, the online variant of S-NCPD shows a faster reduction in reconstruction error and results in more coherent topics compared to S-NCPD, thus achieving both computational efficiency and quality of the resulting topics. Our findings indicate that S-NCPD and its online variant are effective tools for detecting and controlling the duration of topics in temporal text data, providing valuable insights into both persistent and transient trends.more » « less
-
Non-volatile Memory (NVM) offers the opportunity to build large, durable B+ trees with markedly higher performance and faster post-crash recovery than is possible with traditional disk- or flash-based persistence. Unfortunately, cache flush and fence instructions, required for crash consistency and failure atomicity on many machines, introduce substantial overhead not present in non-persistent trees, and force additional NVM reads and writes. The overhead is particularly pronounced in workloads that benefit from cache reuse due to good temporal locality or small working sets---traits commonly observed in real-world applications. In this paper, we propose a buffered durable B+ tree (BD+Tree) that improves performance and reduces NVM traffic viarelaxedpersistence. Execution of a BD+Tree is divided intoepochsof a few milliseconds each; if a crash occurs in epoche,the tree recovers to its state as of the end of epoche-2. (The persistence boundary can always be made current with an explicit sync operation, which quickly advances the epoch by 2.) NVM writes within an epoch are aggregated for delayed persistence, thereby increasing cache reuse and reducing traffic to NVM. In comparison to state-of-the-art persistent B+ trees, our micro-benchmark experiments show that BD+Tree can improve throughput by up to 2.4x and reduce NVM writes by up to 90% when working sets are small or workloads exhibit strong temporal locality. On real-world workloads that benefit from cache reuse, BD+Tree realizes throughput improvements of 1.1--2.4x and up to a 99% decrease in NVM writes. Even on uniform workloads, with working sets that significantly exceed cache capacity, BD+Tree still improves throughput by 1--1.3x. The performance advantage of BD+Tree increases with larger caches, suggesting ongoing benefits as CPUs evolve toward gigabyte cache capacities.more » « less
An official website of the United States government

