skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Why Temporal Persistence of Biometric Features, as Assessed by the Intraclass Correlation Coefficient, Is So Valuable for Classification Performance
It is generally accepted that relatively more permanent (i.e., more temporally persistent) traits are more valuable for biometric performance than less permanent traits. Although this finding is intuitive, there is no current work identifying exactly where in the biometric analysis temporal persistence makes a difference. In this paper, we answer this question. In a recent report, we introduced the intraclass correlation coefficient (ICC) as an index of temporal persistence for such features. Here, we present a novel approach using synthetic features to study which aspects of a biometric identification study are influenced by the temporal persistence of features. What we show is that using more temporally persistent features produces effects on the similarity score distributions that explain why this quality is so key to biometric performance. The results identified with the synthetic data are largely reinforced by an analysis of two datasets, one based on eye-movements and one based on gait. There was one difference between the synthetic and real data, related to the intercorrelation of features in real data. Removing these intercorrelations for real datasets with a decorrelation step produced results which were very similar to that obtained with synthetic features.  more » « less
Award ID(s):
1714623
PAR ID:
10285747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
16
ISSN:
1424-8220
Page Range / eLocation ID:
4555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many developers of biometric systems start with modest samples before general deployment. However, they are interested in how their systems will work with much larger samples. To assist them, we evaluated the effect of gallery size on biometric performance. Identification rates describe the performance of biometric identification, whereas ROC-based measures describe the performance of biometric authentication (verification). Therefore, we examined how increases in gallery size affected identification rates (i.e., Rank-1 Identification Rate, or Rank-1 IR) and ROC-based measures such as equal error rate (EER). We studied these phenomena with synthetic data as well as real data from a face recognition study. It is well known that the Rank-1 IR declines with increasing gallery size, and that the relationship is linear against log(gallery size). We have confirmed this with synthetic and real data. We have shown that this decline can be counteracted with the inclusion of additional information (features) for larger gallery sizes. We have also described the curves which can be used to predict how much additional information would be required to stabilize the Rank-1 IR as a function of gallery size. These equations are also linear in log(gallery size). We have also shown that the entire ROC-curve was not systematically affected by gallery size, and so ROC-based scalar performance metrics such as EER are also stable across gallery size. Unsurprisingly, as additional uncorrelated features are added to the model, EER decreases. We were interested in determining the impact of adding more features on the median, spread and shape of similarity score distributions. We present evidence that these decreases in EER are driven primarily by decreases in the spread of the impostor similarity score distribution. 
    more » « less
  2. 1-parameter persistent homology, a cornerstone in Topological Data Analysis (TDA), studies the evolution of topological features such as connected components and cycles hidden in data. It has been applied to enhance the representation power of deep learning models, such as Graph Neural Networks (GNNs). To enrich the representations of topological features, here we propose to study 2-parameter persistence modules induced by bi-filtration functions. In order to incorporate these representations into machine learning models, we introduce a novel vector representation called Generalized Rank Invariant Landscape (GRIL) for 2-parameter persistence modules. We show that this vector representation is 1-Lipschitz stable and differentiable with respect to underlying filtration functions and can be easily integrated into machine learning models to augment encoding topological features. We present an algorithm to compute the vector representation efficiently. We also test our methods on synthetic and benchmark graph datasets, and compare the results with previous vector representations of 1-parameter and 2-parameter persistence modules. Further, we augment GNNs with GRIL features and observe an increase in performance indicating that GRIL can capture additional features enriching GNNs. We make the complete code for the proposed method available at https://github.com/soham0209/mpml-graph. 
    more » « less
  3. Temporal text data, such as news articles or Twitter feeds, often comprises a mixture of long-lasting trends and transient topics. Effective topic modeling strategies should detect both types and clearly locate them in time. We first demonstrate that nonnegative CANDECOMP/PARAFAC decomposition (NCPD) can automatically identify topics of variable persistence. We then introduce sparseness-constrained NCPD (S-NCPD) and its online variant to control the duration of the detected topics more effectively and efficiently, along with theoretical analysis of the proposed algorithms. Through an extensive study on both semi-synthetic and real-world datasets, we find that our S-NCPD and its online variant can identify both short- and long-lasting temporal topics in a quantifiable and controlled manner, which traditional topic modeling methods are unable to achieve. Additionally, the online variant of S-NCPD shows a faster reduction in reconstruction error and results in more coherent topics compared to S-NCPD, thus achieving both computational efficiency and quality of the resulting topics. Our findings indicate that S-NCPD and its online variant are effective tools for detecting and controlling the duration of topics in temporal text data, providing valuable insights into both persistent and transient trends.

     
    more » « less
  4. Abstract

    This paper presents a new clustering algorithm for space–time data based on the concepts of topological data analysis and, in particular, persistent homology. Employing persistent homology—a flexible mathematical tool from algebraic topology used to extract topological information from data—in unsupervised learning is an uncommon and novel approach. A notable aspect of this methodology consists in analyzing data at multiple resolutions, which allows for distinguishing true features from noise based on the extent of their persistence. We evaluate the performance of our algorithm on synthetic data and compare it to other well‐known clustering algorithms such asK‐means, hierarchical clustering, and DBSCAN (density‐based spatial clustering of applications with noise). We illustrate its application in the context of a case study of water quality in the Chesapeake Bay.

     
    more » « less
  5. Abstract

    One-dimensional persistent homology is arguably the most important and heavily used computational tool in topological data analysis. Additional information can be extracted from datasets by studying multi-dimensional persistence modules and by utilizing cohomological ideas, e.g. the cohomological cup product. In this work, given a single parameter filtration, we investigate a certain 2-dimensional persistence module structure associated with persistent cohomology, where one parameter is the cup-length$$\ell \ge 0$$0and the other is the filtration parameter. This new persistence structure, called thepersistent cup module, is induced by the cohomological cup product and adapted to the persistence setting. Furthermore, we show that this persistence structure is stable. By fixing the cup-length parameter$$\ell $$, we obtain a 1-dimensional persistence module, called the persistent$$\ell $$-cup module, and again show it is stable in the interleaving distance sense, and study their associated generalized persistence diagrams. In addition, we consider a generalized notion of apersistent invariant, which extends both therank invariant(also referred to aspersistent Betti number), Puuska’s rank invariant induced by epi-mono-preserving invariants of abelian categories, and the recently-definedpersistent cup-length invariant, and we establish their stability. This generalized notion of persistent invariant also enables us to lift the Lyusternik-Schnirelmann (LS) category of topological spaces to a novel stable persistent invariant of filtrations, called thepersistent LS-category invariant.

     
    more » « less