Polar temperatures during the Last Interglacial [LIG; ~129 to 116 thousand years (ka)] were warmer than today, making this time period an important testing ground to better understand how ice sheets respond to warming. However, it remains debated how much and when the Antarctic and Greenland ice sheets changed during this period. Here, we present a combination of new and existing absolutely dated LIG sea-level observations from Britain, France, and Denmark. Because of glacial isostatic adjustment (GIA), the LIG Greenland ice melt contribution to sea-level change in this region is small, which allows us to constrain Antarctic ice change. We find that the Antarctic contribution to LIG global mean sea level peaked early in the interglacial (before 126 ka), with a maximum contribution of 5.7 m (50th percentile, 3.6 to 8.7 m central 68% probability) before declining. Our results support an asynchronous melt history over the LIG, with an early Antarctic contribution followed by later Greenland Ice Sheet mass loss.
more »
« less
Sea-level trends across The Bahamas constrain peak last interglacial ice melt
During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth’s rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.
more »
« less
- Award ID(s):
- 1841888
- PAR ID:
- 10285778
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 33
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2026839118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)It is generally agreed that the Last Interglacial (LIG; ∼130 – 115 ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from four 3D GIA calculations show that accounting for lateral structure can act to increase local sea level by up to ∼1.5 m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site.more » « less
-
Global sea levels during the last interglacial (LIG), 129,000–116,000 years ago, may have reached as much as 5–10 m higher than present. However, the elevation of the LIG highstand varies locally due to tectonics, subsidence, steric effects, and glacial isostatic adjustment (GIA). The variability brought upon by GIA can be used to constrain the past distribution of ice sheets including the source of higher sea levels during the LIG. In spite of its importance for fingerprinting the source of additional meltwater at the LIG, little is known about the elevation of LIG sea levels across Antarctica. In this study we review the geologic constraints on the elevation of the LIG highstand across Antarctica. We find that although several Late Pleistocene sea-level constraints are available across the continent very few of them provide definitive LIG ages. Arguably the most probable LIG sea-level indicators come from East Antarctica but most of them have age constraints approaching the limits of radiocarbon dating (>~45 ka) with many likely dating to Marine Isotope Stage 3, not the LIG. For West Antarctica, Late Pleistocene sea level constraints are confined to a few poorly or completely undated possible examples from the Antarctic Peninsula. Our review suggests that much more work is needed on constraining the elevation of the LIG highstand across Antarctica.more » « less
-
Previous studies have interpreted Last Interglacial (LIG;∼129–116 ka) sea‐level estimates in multiple different ways to calibrate projections of future Antarctic ice‐sheet (AIS) mass loss and associated sea‐level rise. This study systematically explores the extent to which LIG constraints could inform future Antarctic contributions to sea‐level rise. We develop a Gaussian process emulator of an ice‐sheet model to produce continuous probabilistic projections of Antarctic sea‐level contributions over the LIG and a future high‐emissions scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG constraints to find associated likelihoods of model parameterizations. LIG estimates inform both the probability of past and future ice‐sheet instabilities and projections of future sea‐level rise through 2150. Although best‐available LIG estimates do not meaningfully constrain Antarctic mass loss projections or physical processes until 2060, they become increasingly informative over the next 130 years. Uncertainties of up to 50 cm remain in future projections even if LIG Antarctic mass loss is precisely known (±5 cm), indicating that there is a limit to how informative the LIG could be for ice‐sheet model future projections. The efficacy of LIG constraints on Antarctic mass loss also depends on assumptions about the Greenland ice sheet and LIG sea‐level chronology. However, improved field measurements and understanding of LIG sea levels still have potential to improve future sea‐level projections, highlighting the importance of continued observational efforts.more » « less
-
Glacial isostatic adjustment (GIA) simulations using earth models that vary viscoelastic structure with depth alone cannot simultaneously fit geographic trends in the elevation of marine isotope stage (MIS) 5a relative sea level (RSL) indicators across continental North America and the Caribbean and yield conflicting estimates of global mean sea level (GMSL). We present simulations with a GIA model that incorporates three-dimensional (3-D) variation in North American viscoelastic earth structure constructed by combining high-resolution seismic tomographic imaging with a new method for mapping this imaging into lateral variations in lithospheric thickness and mantle viscosity. We pair this earth model with a global ice history based on updated constraints on ice volume and geometry. The GIA prediction provides the first simultaneous reconciliation of MIS 5a North American and Caribbean RSL highstands and strengthens arguments that MIS 5a peak GMSL reached values close to that of the Last Interglacial. This result highlights the necessity of incorporating realistic 3-D earth structure into GIA predictions with continent-scale RSL data sets.more » « less