skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the behavior of the free boundary for a one-phase Bernoulli problem with mixed boundary conditions
Award ID(s):
1714098
PAR ID:
10285876
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications on Pure & Applied Analysis
Volume:
19
Issue:
10
ISSN:
1553-5258
Page Range / eLocation ID:
4853 to 4878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grain boundaries can greatly affect the transport properties of polycrystalline materials, particularly when the grain size approaches the nanoscale. While grain boundaries often enhance diffusion by providing a fast pathway for chemical transport, some material systems, such as those of solid oxide fuel cells and battery cathode particles, exhibit the opposite behavior, where grain boundaries act to hinder diffusion. To facilitate the study of systems with hindered grain boundary diffusion, we propose a model that utilizes the smoothed boundary method to simulate the dynamic concentration evolution in polycrystalline systems. The model employs domain parameters with diffuse interfaces to describe the grains, thereby enabling solutions with explicit consideration of their complex geometries. The intrinsic error arising from the diffuse interface approach employed in our proposed model is explored by comparing the results against a sharp interface model for a variety of parameter sets. Finally, two case studies are considered to demonstrate potential applications of the model. First, a nanocrystalline yttria-stabilized zirconia solid oxide fuel cell system is investigated, and the effective diffusivities are extracted from the simulation results and are compared to the values obtained through mean-field approximations. Second, the concentration evolution during lithiation of a polycrystalline battery cathode particle is simulated to demonstrate the method’s capability. 
    more » « less
  2. Data associated with the article "Simulating Hindered Grain Boundary Diffusion Using the Smoothed Boundary Method" [1]. 1. Hanson, E., Andrews, W. B., Powers, M., Jenkins, K. G., & Thornton, K. (2024). Simulating hindered grain boundary diffusion using the smoothed boundary method. Modelling and Simulation in Materials Science and Engineering, 32(5), 055027. 
    more » « less