Abstract Although an established model organism, Tetrahymena thermophila remains comparatively inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on unconnected datasets and outdated algorithms. Here, we report a new approach to consolidating RNA-seq and microarray data based on a systematic exploration of parameters and computational controls, enabling us to infer functional gene associations from their co-expression patterns. To illustrate the power of this approach, we took advantage of new data regarding a previously studied pathway, the biogenesis of a secretory organelle called the mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new genes that we predicted to be mucocyst-associated based on their co-expression and found that knocking out each of them results in mucocyst secretion defects. We also found that our approach succeeds in clustering genes associated with several other cellular pathways that we evaluated based on prior literature. We present the Tetrahymena Gene Network Explorer (TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this organism and as a framework for building similar tools for other systems.
more »
« less
Disruption of a ∼23–24 nucleotide small RNA pathway elevates DNA damage responses in Tetrahymena thermophila
Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.
more »
« less
- Award ID(s):
- 2019228
- PAR ID:
- 10285977
- Editor(s):
- Misteli, Tom
- Date Published:
- Journal Name:
- Molecular Biology of the Cell
- Volume:
- 32
- Issue:
- 15
- ISSN:
- 1059-1524
- Page Range / eLocation ID:
- 1335 to 1346
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.more » « less
-
Abstract Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.more » « less
-
Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs–named premeiotic 24-nt phasiRNAs–have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediatingPHASprecursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.more » « less
-
Abstract Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.more » « less
An official website of the United States government

