skip to main content

Title: Differential regulation of G protein signaling in Arabidopsis through two distinct pathways that internalize AtRGS1

In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein–mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. InArabidopsis thaliana, GPCRs are not required for G protein–coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Signaling
Page Range / eLocation ID:
Article No. eabe4090
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations inVPS4led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion ofVPS4from anend3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTHvps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally,vps4Δrcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.

    more » « less
  2. The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.

    more » « less
  3. G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β 2 AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (G s ). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β 2 AR by G s protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β 2 AR and the conformational interconversions of G s between closed and open conformations in the NE(+)–β 2 AR–G s ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter G s α subunit (G s α) conformational transitions. Our simulations showed that the interdomain movement and the stacking of G s α α1 and α5 helices are significant for increasing the distance between the G s α and β 2 AR, which may indicate a partial dissociation of G s α The distance increase commences when G s α is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β 2 AR interacting with G s α, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation. 
    more » « less
  4. Synopsis The gill proteome of threespine sticklebacks (Gasterosteus aculeatus) differs greatly in populations that inhabit diverse environments characterized by different temperature, salinity, food availability, parasites, and other parameters. To assess the contribution of a specific environmental parameter to such differences it is necessary to isolate its effects from those of other parameters. In this study the effect of environmental salinity on the gill proteome of G. aculeatus was isolated in controlled mesocosm experiments. Salinity-dependent changes in the gill proteome were analyzed by Liquid chromatography/Tandem mass spectrometry data-independent acquisition (DIA) and Skyline. Relative abundances of 1691 proteins representing the molecular phenotype of stickleback gills were quantified using previously developed MSMS spectral and assay libraries in combination with DIA quantitative proteomics. Non-directional stress responses were distinguished from osmoregulatory protein abundance changes by their consistent occurrence during both hypo- and hyper-osmotic salinity stress in six separate mesocosm experiments. If the abundance of a protein was consistently regulated in opposite directions by hyper- versus hypo-osmotic salinity stress, then it was considered an osmoregulatory protein. In contrast, if protein abundance was consistently increased irrespective of whether salinity was increased or decreased, then it was considered a non-directional response protein. KEGG pathway analysis revealed that the salivary secretion, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, citrate cycle, oxidative phosphorylation, and corresponding endocrine and extracellular signaling pathways contain most of the osmoregulatory gill proteins whose abundance is directly proportional to environmental salinity. Most proteins that were inversely correlated with salinity map to KEGG pathways that represent proteostasis, immunity, and related intracellular signaling processes. Non-directional stress response proteins represent fatty and amino acid degradation, purine metabolism, focal adhesion, mRNA surveillance, phagosome, endocytosis, and associated intracellular signaling KEGG pathways. These results demonstrate that G. aculeatus responds to salinity changes by adjusting osmoregulatory mechanisms that are distinct from transient non-directional stress responses to control compatible osmolyte synthesis, transepithelial ion transport, and oxidative energy metabolism. Furthermore, this study establishes salinity as a key factor for causing the regulation of numerous proteins and KEGG pathways with established functions in proteostasis, immunity, and tissue remodeling. We conclude that the corresponding osmoregulatory gill proteins and KEGG pathways represent molecular phenotypes that promote transepithelial ion transport, cellular osmoregulation, and gill epithelial remodeling to adjust gill function to environmental salinity. 
    more » « less
  5. Abstract

    Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors’ TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2–4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.

    more » « less