skip to main content

Title: Lipschitz-free Spaces on Finite Metric Spaces
Abstract Main results of the paper are as follows: (1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$ . (2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs. Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.
Authors:
; ;
Award ID(s):
1700176
Publication Date:
NSF-PAR ID:
10286174
Journal Name:
Canadian Journal of Mathematics
Volume:
72
Issue:
3
Page Range or eLocation-ID:
774 to 804
ISSN:
0008-414X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study counting problems for several types of orientations of chordal graphs: source-sink-free orientations, sink-free orientations, acyclic orientations, and bipolar orientations, and, for the latter two, we also present linear-time uniform samplers. Counting sink-free, acyclic, or bipolar orientations are known to be #P-complete for general graphs, motivating our study on a restricted, yet well-studied, graph class. Our main focus is source-sink-free orientations, a natural restricted version of sink-free orientations related to strong orientations, which we introduce in this work. These orientations are intriguing, since despite their similarity, currently known FPRAS and sampling techniques (such as Markov chains or sink-popping) that apply to sink-free orientations do not seem to apply to source-sink-free orientations. We present fast polynomialtime algorithms counting these orientations on chordal graphs. Our approach combines dynamic programming with inclusion-exclusion (going two levels deep for source-sink-free orientations and one level for sinkfree orientations) throughout the computation. Dynamic programming counting algorithms can be typically used to produce a uniformly random sample. However, due to the negative terms of the inclusion-exclusion, the typical approach to obtain a polynomial-time sampling algorithm does not apply in our case. Obtaining such an almost uniform sampling algorithm for source-sink-free orientations in chordal graphs remains an openmore »problem. Little is known about counting or sampling of acyclic or bipolar orientations, even on restricted graph classes. We design efficient (linear-time) exact uniform sampling algorithms for these orientations on chordal graphs. These algorithms are a byproduct of our counting algorithms, but unlike in other works that provide dynamic-programming-based samplers, we produce a random orientation without computing the corresponding count, which leads to a faster running time than the counting algorithm (since it avoids manipulation of large integers).« less
  2. Abstract We consider the problem of computing the partition function $\sum _x e^{f(x)}$ , where $f: \{-1, 1\}^n \longrightarrow {\mathbb R}$ is a quadratic or cubic polynomial on the Boolean cube $\{-1, 1\}^n$ . In the case of a quadratic polynomial f , we show that the partition function can be approximated within relative error $0 < \epsilon < 1$ in quasi-polynomial $n^{O(\ln n - \ln \epsilon )}$ time if the Lipschitz constant of the non-linear part of f with respect to the $\ell ^1$ metric on the Boolean cube does not exceed $1-\delta $ , for any $\delta>0$ , fixed in advance. For a cubic polynomial f , we get the same result under a somewhat stronger condition. We apply the method of polynomial interpolation, for which we prove that $\sum _x e^{\tilde {f}(x)} \ne 0$ for complex-valued polynomials $\tilde {f}$ in a neighborhood of a real-valued f satisfying the above mentioned conditions. The bounds are asymptotically optimal. Results on the zero-free region are interpreted as the absence of a phase transition in the Lee–Yang sense in the corresponding Ising model. The novel feature of the bounds is that they control the total interaction of each vertex but notmore »every single interaction of sets of vertices.« less
  3. We consider the maximum matching problem in the semi-streaming model formalized by Feigenbaum, Kannan, McGregor, Suri, and Zhang that is inspired by giant graphs of today. As our main result, we give a two-pass (1/2 + 1/16)-approximation algorithm for triangle-free graphs and a two-pass (1/2 + 1/32)-approximation algorithm for general graphs; these improve the approximation ratios of 1/2 + 1/52 for bipartite graphs and 1/2 + 1/140 for general graphs by Konrad, Magniez, and Mathieu. In three passes, we are able to achieve approximation ratios of 1/2 + 1/10 for triangle-free graphs and 1/2 + 1/19.753 for general graphs. We also give a multi-pass algorithm where we bound the number of passes precisely—we give a (2/3 − ε)- approximation algorithm that uses 2/(3ε) passes for triangle-free graphs and 4/(3ε) passes for general graphs. Our algorithms are simple and combinatorial, use O(n log n) space, and (can be implemented to) have O(1) update time per edge. For general graphs, our multi-pass algorithm improves the best known deterministic algorithms in terms of the number of passes: * Ahn and Guha give a (2/3−ε)-approximation algorithm that uses O(log(1/ε)/ε2) passes, whereas our (2/3 − ε)-approximation algorithm uses 4/(3ε) passes; * they also give amore »(1 − ε)-approximation algorithm that uses O(log n · poly(1/ε)) passes, where n is the number of vertices of the input graph; although our algorithm is (2/3−ε)-approximation, our number of passes do not depend on n. Earlier multi-pass algorithms either have a large constant inside big-O notation for the number of passes or the constant cannot be determined due to the involved analysis, so our multi-pass algorithm should use much fewer passes for approximation ratios bounded slightly below 2/3.« less
  4. We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items.more »For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an e/(e-1) factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of e/(e-1), hence resolving it completely.« less
  5. A bstract We study monodromy defects in O ( N ) symmetric scalar field theories in d dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on S 1 × H d− 1 , where H d− 1 is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along S 1 . In this description, the codimension two defect lies at the boundary of H d− 1 . We first study the general monodromy defect in the free field theory, and then develop the large N expansion of the defect in the interacting theory, focusing for simplicity on the case of N complex fields with a one-parameter monodromy condition. We also use the ϵ -expansion in d = 4 − ϵ , providing a check on the large N approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on S 1 × H d− 1 . It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RGmore »flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the low-lying Kaluza-Klein modes on H d− 1 . We also show that, adapting standard techniques from the AdS/CFT literature, the S 1 × H d− 1 setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including one-point functions of bulk operators, scaling dimensions of defect operators, and four-point functions of operator insertions on the defect.« less