skip to main content


Title: Spinodal stratification in ultrathin micellar foam films
We report the discovery of a hitherto unreported mechanism of drainage and rupture of micellar foam films that presents unexplored opportunities for understanding and controlling the stability, lifetime and properties of ubiquitous foams. It is well-known that ultrathin micellar foam films exhibit stratification, manifested as stepwise thinning and coexistence of thin–thick flat regions that differ in thickness by a nanoscopic step size equal to the intermicellar distance. Stratification typically involves the spontaneous formation and growth of thinner, darker, circular domains or thicker, brighter mesas. Mechanistically, domain expansion appears similar to hole growth in polymer films undergoing dewetting by nucleation and growth mechanism that can be described by considering metastable states resulting from a thickness-dependent oscillatory free energy. Dewetting polymer films occasionally phase separate into thick and thin regions forming an interconnected, network-like morphology by undergoing spinodal dewetting. However, the formation of thick–thin spinodal patterns has never been reported for freestanding films. In this contribution, we show that the thickness-dependent oscillatory contribution to free energy that arises due to confinement-induced layering of micelles can drive the formation of such thick-thin regions by undergoing a process we term as spinodal stratification. We visualize and characterize the nanoscopic thickness variations and transitions by using IDIOM (interferometry digital imaging optical microscopy) protocols to obtain exquisite thickness maps of freestanding films. We find that evaporation and enhanced drainage in vertical films play a critical role in driving the process, and spinodal stratification can occur in both single foam films and in bulk foam.  more » « less
Award ID(s):
1806011
NSF-PAR ID:
10286255
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
4
Issue:
3
ISSN:
2058-9689
Page Range / eLocation ID:
626 to 638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrathin foam films containing supramolecular structures like micelles in bulk and adsorbed surfactant at the liquid–air interface undergo drainage via stratification. At a fixed surfactant concentration, the stepwise decrease in the average film thickness of a stratifying micellar film yields a characteristic step size that also describes the quantized thickness difference between coexisting thick–thin flat regions. Even though many published studies claim that step size equals intermicellar distance obtained using scattering from bulk solutions, we found no reports of a direct comparison between the two length scales. It is well established that step size is inversely proportional to the cubic root of surfactant concentration but cannot be estimated by adding micelle size to Debye length, as the latter is inversely proportional to the square root of surfactant concentration. In this contribution, we contrast the step size obtained from analysis of nanoscopic thickness variations and transitions in stratifying foam films using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols, that we developed, with the intermicellar distance obtained using small-angle X-ray scattering. We find that stratification driven by the confinement-induced layering of micelles within the liquid–air interfaces of a foam film provides a sensitive probe of non-DLVO (Derjaguin–Landau–Verwey–Overbeek) supramolecular oscillatory structural forces and micellar interactions.

     
    more » « less
  2. Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime ( c /CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick–thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity. 
    more » « less
  3. null (Ed.)
    Bile salts, especially in their aggregated or micellar form, play a critical role in health and medicine by solubilizing cholesterol, fat-soluble vitamins, and drugs. However, in contrast to the head–tail (HT) surfactants like sodium dodecyl sulfate (SDS), amphiphilic bile salts have an unusual steroid structure and exhibit a smaller aggregation number ( N agg < 20 molecules per micelle vs. N agg > 50 for SDS). Foam films formed by micellar solutions of typical surfactants like SDS exhibit stratification manifested as stepwise thinning and coexistence of flat thick–thin regions that differ by a step-size proportional to the intermicellar distance. We consider drainage via stratification studies as an effective and insightful probe of the strength and magnitude of intermicellar interactions and resulting supramolecular oscillatory structural (SOS) surface force contribution to disjoining pressure. However, there are neither prior reports of stratification in foam films formed with bile salt solutions nor measurements of SOS surface forces. Here we report the discovery and characterization of stratification in foam films formed by aqueous solutions of four bile salts – sodium cholate (NaC), sodium taurocholate (NaTC), sodium deoxycholate (NaDC), and sodium glycodeoxycholate (NaGDC) – that have a similar steroid nucleus, but difference in conjugation sites and the number of hydroxyl groups (3 for NaC and NaTC, 2 for NaDC and NaGC). Using IDIOM (interferometry digital imaging optical microscopy) protocols we developed recently to characterize and analyze thickness variations and transitions, we find that foam films made with bile salts exhibit fewer stepwise transitions and smaller step-size than SDS solutions. Also, we measured a lower drop in surface tension and lower magnitude of thickness-dependent disjoining pressure compared to SDS solutions. We find that the bile salts with a matched number of hydroxyl groups exhibit similar properties in tensiometry and foam film studies. We show that the stratification studies can characterize the influence of chemical structure on the magnitude and range of intermicellar interactions as well their influence on drainage and stability of foam films. 
    more » « less
  4. Abstract

    The solid–polymer melt interface is of great scientific interest due to its vital importance in governing a wide array of physical and mechanical properties of polymer thin films. Recent studies have elucidated the coexistence of two different chain conformations of polymer chains adsorbed on a solid (i.e., loosely adsorbed chains and flattened chains). In this work, film stabilities of the polystyrene (PS) “interfacial sublayer” (composed of outer loosely adsorbed chains and inner flattened chains) and flattened layer (composed of the lone flattened chains) prepared on silicon (Si) substrates are investigated. The atomic force microscopy studies reveal that the as‐rinsed PS flattened layer is subjected to spinodal‐like dewetting during a post‐thermal annealing process even at temperatures below the bulk glass transition temperature. Furthermore, it is found that the surface morphology of the flattened layer can be reversibly changed from a homogeneous pattern under good solvent conditions to spinodal‐like droplets under poor solvent conditions. By contrast, it is found that the PS interfacial sublayer remains stable under both good and poor solvent conditions. These findings illuminate the role which density variations within the adsorbed layers play in the mechanism behind the wetting‐dewetting transition.

     
    more » « less
  5. null (Ed.)
    Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T g ) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics. 
    more » « less