skip to main content


Title: Reconfigurable Network-on-Chip Security Architecture
Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in IoT applications. The increased complexity is demanding designers to consider several critical factors, such as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines. These requirements lead to more complex security concerns. SoC manufacturers outsource some of the intellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual properties can contain malicious implants, which can launch attacks using the resources provided by the on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on securing NoC have considered lightweight encryption, authentication, and other attack detection mechanisms such as denial-of-service and buffer overflows. Unfortunately, these approaches focus on designing statically optimized security solutions. As a result, they are not suitable for many IoT systems with long application life and dynamic requirement changes. There is a critical need to design reconfigurable security architectures that can be dynamically tuned based on changing requirements. In this article, we propose a tier-based reconfigurable security architecture that can adapt to different use-case scenarios. We explore how to design an efficient reconfigurable architecture that can support three popular NoC security mechanisms (encryption, authentication, and denial-of-service attack detection and localization) and implement suitable dynamic reconfiguration techniques. We evaluate our proposed framework by running standard benchmarks enabling different tiers of security and provide a comprehensive analysis of how different levels of security can affect application performance, energy efficiency, and area overhead.  more » « less
Award ID(s):
1936040
NSF-PAR ID:
10286256
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM Transactions on Design Automation of Electronic Systems
Volume:
25
Issue:
6
ISSN:
1084-4309
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs. 
    more » « less
  2. Network-on-Chip (NoC) is widely employed by multi-core System-on-Chip (SoC) architectures to cater to their communication requirements. Increasing NoC complexity coupled with its widespread usage has made it a focal point of potential security attacks. Distributed Denial-of-Service (DDoS) is one such attack that is caused by malicious intellectual property (IP) cores flooding the network with unnecessary packets causing significant performance degradation through NoC congestion. In this paper, we propose an efficient framework for real-time detection and localization of DDoS attacks. This paper makes three important contributions. We propose a real-time and lightweight DDoS attack detection technique for NoC-based SoCs by monitoring packets to detect any violations. Once a potential attack has been flagged, our approach is also capable of localizing the malicious IPs using the latency data in the NoC routers. The applications are statically profiled during design time to determine communication patterns. These patterns are then used for real-time detection and localization of DDoS attacks. We have evaluated the effectiveness of our approach against different NoC topologies and architecture models using both real benchmarks and synthetic traffic patterns. Our experimental results demonstrate that our proposed approach is capable of real-time detection and localization of DDoS attacks originating from multiple malicious IPs in NoC-based SoCs. 
    more » « less
  3. Increasing System-on-Chip (SoC) design complexity coupled with time-to-market constraints have motivated manufacturers to integrate several third-party Intellectual Property (IP) cores in their SoC designs. IPs acquired from potentially untrusted vendors can be a serious threat to the trusted IPs when they are connected using the same Network-on-Chip (NoC). For example, the malicious IPs can tamper packets as well as degrade SoC performance by launching DoS attacks. While existing authentication schemes can check the data integrity of packets, it can introduce unacceptable overhead on resource-constrained SoCs. In this paper, we propose a lightweight and trust-aware routing mechanism to bypass malicious IPs during packet transfers. This reduces the number of re-transmissions due to tampered data, minimizes DoS attack risk, and as a result, improves SoC performance even in the presence of malicious IPs. Experimental results demonstrate significant improvement in both performance and energy efficiency with minor impact on area overhead. 
    more » « less
  4. null (Ed.)
    System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enable trusted NoC communication in the presence of potentially untrusted IPs. This paper makes three key contributions. (1) We model an HT in NoC router that activates misrouting of the packets to initiate denial of service, delay of service, and injection suppression. (2) We propose a dynamic shielding technique that isolates the identified HT infected IP. (3) We present a secure routing algorithm to bypass the HT infected NoC router. Experimental results on HT infected NoC demonstrate that the proposed method reduces effective average packet latency by 38% in real benchmarks and 48% in synthetic traffic patterns. Our method also increases throughput and reduces effective average deflected packet latency by 62% in real benchmarks and 97% in synthetic traffic patterns. 
    more » « less
  5. Network-on-Chip (NoC) fulfills the communication requirements of modern System-on-Chip (SoC) architectures. Due to the resource-constrained nature of NoC-based SoCs, it is a major challenge to secure on-chip communication against eavesdropping attacks using traditional encryption methods. In this paper, we propose a lightweight encryption technique using chaffing and winnowing (C&W) with all-or-nothing transform (AONT) that benefits from the unique NoC traffic characteristics. Our experimental results demonstrate that our proposed encryption technique provides the required security with significantly less area and energy overhead compared to the state-of-the-art approaches. 
    more » « less