skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hardware-Assisted Malware Detection using Explainable Machine Learning
Malicious software, popularly known as malware, is widely acknowledged as a serious threat to modern computing systems. Software-based solutions, such as anti-virus software, are not effective since they rely on matching patterns that can be easily fooled by carefully crafted malware with obfuscation or other deviation capabilities. While recent malware detection methods provide promising results through effective utilization of hardware features, the detection results cannot be interpreted in a meaningful way. In this paper, we propose a hardware-assisted malware detection framework using explainable machine learning. This paper makes three important contributions. First, we theoretically establish that our proposed method can provide interpretable explanation of classification results to address the challenge of transparency. Next, we show that the explainable outcome can lead to accurate localization of malicious behaviors. Finally, experimental evaluation using a wide variety of realworld malware benchmarks demonstrates that our framework can produce accurate and human-understandable malware detection results with provable guarantees.  more » « less
Award ID(s):
1908131
PAR ID:
10286386
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Computer Design (ICCD)
Page Range / eLocation ID:
663 to 666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Malicious software, popularly known as malware, is a serious threat to modern computing systems. A comprehensive cybercrime study by Ponemon Institute highlights that malware is the most expensive attack for organizations, with an average revenue loss of $2.6 million per organization in 2018 (11% increase compared to 2017). Recent high-profile malware attacks coupled with serious economic implications have dramatically changed our perception of threat from malware. Software-based solutions, such as anti-virus programs, are not effective since they rely on matching patterns (signatures) that can be easily fooled by carefully crafted malware with obfuscation or other deviation capabilities. Moreover, software-based solutions are not fast enough for real-time malware detection in safety-critical systems. In this paper, we investigate promising approaches for hardware-assisted malware detection using machine learning. Specifically, we explore how machine learning can be effective for malware detection utilizing hardware performance counters, embedded trace buffer as well as on-chip network traffic analysis. 
    more » « less
  2. The ubiquitous deployment of robots across diverse domains, from industrial automation to personal care, underscores their critical role in modern society. However, this growing dependence has also revealed security vulnerabilities. An attack vector involves the deployment of malicious software (malware) on robots, which can cause harm to robots themselves, users, and even the surrounding environment. Machine learning approaches, particularly supervised ones, have shown promise in malware detection by building intricate models to identify known malicious code patterns. However, these methods are inherently limited in detecting unseen or zero-day malware variants as they require regularly updated massive datasets that might be unavailable to robots. To address this challenge, we introduce ROBOGUARDZ, a novel malware detection framework based on zero-shot learning for robots. This approach allows ROBOGUARDZ to identify unseen malware by establishing relationships between known malicious code and benign behaviors, allowing detection even before the code executes on the robot. To ensure practical deployment in resource-constrained robotic hardware, we employ a unique parallel structured pruning and quantization strategy that compresses the ROBOGUARDZ detection model by 37.4% while maintaining its accuracy. This strategy reduces the size of the model and computational demands, making it suitable for real-world robotic systems. We evaluated ROBOGUARDZ on a recent dataset containing real-world binary executables from multi-sensor autonomous car controllers. The framework was deployed on two popular robot embedded hardware platforms. Our results demonstrate an average detection accuracy of 94.25% and a low false negative rate of 5.8% with a minimal latency of 20 ms, which demonstrates its effectiveness and practicality. 
    more » « less
  3. With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholder’s, particularly, end user’s security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI. 
    more » « less
  4. Ko, Hanseok (Ed.)
    Malware represents a significant security concern in today’s digital landscape, as it can destroy or disable operating systems, steal sensitive user information, and occupy valuable disk space. However, current malware detection methods, such as static-based and dynamic-based approaches, struggle to identify newly developed ("zero-day") malware and are limited by customized virtual machine (VM) environments. To overcome these limitations, we propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science. Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network. The generated network topologies are input into the GraphSAGE architecture to efficiently distinguish between benign and malicious software applications, with the operation names denoted as node features. Importantly, the GraphSAGE models analyze the network’s topological geometry to make predictions, enabling them to detect state-of-the-art malware and prevent potential damage during execution in a VM. To evaluate our approach, we conduct a study on a dataset comprising source code from 24,376 applications, specifically written in C/C++, sourced directly from widely-recognized malware and various types of benign software. The results show a high detection performance with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 99.85%. Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution when compared to current state-of-the-art malware detection methods. The code is released at https://github.com/HantangZhang/MGN. 
    more » « less
  5. Malware written in dynamic languages such as PHP routinely employ anti-analysis techniques such as obfuscation schemes and evasive tricks to avoid detection. On top of that, attackers use automated malware creation tools to create numerous variants with little to no manual effort. This paper presents a system called Cubismo to solve this pressing problem. It processes potentially malicious files and decloaks their obfuscations, exposing the hidden malicious code into multiple files. The resulting files can be scanned by existing malware detection tools, leading to a much higher chance of detection. Cubismo achieves improved detection by exploring all executable statements of a suspect program counterfactually to see through complicated polymorphism, metamorphism and, obfuscation techniques and expose any malware. Our evaluation on a real-world data set collected from a commercial web hosting company shows that Cubismo is highly effective in dissecting sophisticated metamorphic malware with multiple layers of obfuscation. In particular, it enables VirusTotal to detect 53 out of 56 zero-day malware samples in the wild, which were previously undetectable. 
    more » « less