skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial concepts of number, size, and time in an indigenous culture
In industrialized groups, adults implicitly map numbers, time, and size onto space according to cultural practices like reading and counting (e.g., from left to right). Here, we tested the mental mappings of the Tsimane’, an indigenous population with few such cultural practices. Tsimane’ adults spatially arranged number, size, and time stimuli according to their relative magnitudes but showed no directional bias for any domain on any spatial axis; different mappings went in different directions, even in the same participant. These findings challenge claims that people have an innate left-to-right mapping of numbers and that these mappings arise from a domain-general magnitude system. Rather, the direction-specific mappings found in industrialized cultures may originate from direction-agnostic mappings that reflect the correlational structure of the natural world.  more » « less
Award ID(s):
1901262
PAR ID:
10286430
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
33
ISSN:
2375-2548
Page Range / eLocation ID:
Article No. eabg4141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From early in life, people implicitly associate time, number, and other abstract conceptual domains with space. Accord- ing to the Generalized Magnitude System proposal, these men- tal mappings reflect a common neural system for represent- ing various magnitudes, and share a common spatial organiza- tion. In a test of this proposal, here we measured mappings of size, time, and number in the Tsimane’, an indigenous Ama- zonian group with few of the cultural practices (like reading and math) that spatialize size, time, and number in the expe- rience of industrialized adults. On three spatial axes, the Tsi- mane’ systematically arranged imagistic stimuli according to their magnitudes, but they showed no directional preferences overall and individuals often mapped different domains in op- posite directions. The results are inconsistent with predictions of the Generalized Magnitude System proposal but can be ex- plained by Hierarchical Mental Metaphor Theory, according to which mental mappings initially reflect a set of correlations observable in the natural world. 
    more » « less
  2. Spatial language is often used metaphorically to describe other domains, including time (long sound) and pitch (high sound). How does experience with these metaphors shape the ability to associate space with other domains? Here, we tested 3- to 6-year-old English-speaking children and adults with a cross-domain matching task. We probed cross-domain relations that are expressed in English metaphors for time and pitch (length-time and height-pitch), as well as relations that are unconventional in English but expressed in other languages (size-time and thickness-pitch). Participants were tested with a perceptual matching task, in which they matched between spatial stimuli and sounds of different durations or pitches, and a linguistic matching task, in which they matched between a label denoting a spatial attribute, duration, or pitch, and a picture or sound representing another dimension. Contrary to previous claims that experience with linguistic metaphors is necessary for children to make cross-domain mappings, children performed above chance for both familiar and unfamiliar relations in both tasks, as did adults. Children’s performance was also better when a label was provided for one of the dimensions, but only when making length-time, size-time, and height-pitch mappings (not thickness-pitch mappings). These findings suggest that, although experience with metaphorical language is not necessary to make cross-domain mappings, labels can promote these mappings, both when they have familiar metaphorical uses (e.g., English ‘long’ denotes both length and duration), and when they describe dimensions that share a common ordinal reference frame (e.g., size and duration, but not thickness and pitch). 
    more » « less
  3. We investigate number and arithmetic learning among a Bolivian indigenous people, the Tsimane’, for whom formal schooling is comparatively recent in history and variable in both extent and consistency. We first present a large-scale meta-analysis on child number development involving over 800 Tsimane’ children. The results emphasize the impact of formal schooling: Children are only found to be full counters when they have attended school, suggesting the importance of cultural support for early mathematics. We then test especially remote Tsimane’ communities and document the development of specialized arithmetical knowledge in the absence of direct formal education. Specifically, we describe individuals who succeed on arithmetic problems involving the number five—which has a distinct role in the local economy—even though they do not succeed on some lower numbers. Some of these participants can perform multiplication with fives at greater accuracy than addition by one. These results highlight the importance of cultural factors in early mathematics and suggest that psychological theories of number where quantities are derived from lower numbers via repeated addition (e.g., a successor function) are unlikely to explain the diversity of human mathematical ability. 
    more » « less
  4. Perlman, Marcus (Ed.)
    Children in industrialized cultures typically succeed on Give-N, a test of counting ability, by age 4. On the other hand, counting appears to be learned much later in the Tsimane’, an indigenous group in the Bolivian Amazon. This study tests three hypotheses for what may cause this difference in timing: (a) Tsimane’ children may be shy in providing behavioral responses to number tasks, (b) Tsimane’ children may not memorize the verbal list of number words early in acquisition, and/or (c) home environments may not support mathematical learning in the same way as in US samples, leading Tsimane’ children to primarily acquire mathematics through formalized schooling. Our results suggest that most of our subjects are not inhibited by shyness in responding to experimental tasks. We also find that Tsimane’ children (N = 100, ages 4-11) learn the verbal list later than US children, but even upon acquiring this list, still take time to pass Give-N tasks. We find that performance in counting varies across tasks and is related to formal schooling. These results highlight the importance of formal education, including instruction in the count list, in learning the meanings of the number words. 
    more » « less
  5. Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based “associative” and holistic “structural” mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1–10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of esti- mates), whereas holistic “structural” mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral “response grid” (akin to a ruler) to an analog “mental number line” upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typi- cal at the individual level, which calls into question the nature of “holistic structural mapping”. A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial. 
    more » « less