Summary Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied.We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3).We confirmed thatphot1‐5/phot2‐1leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly,Arabidopsis(dicot) andBrachypodium distachyon(monocot) mutants lacking guard cell CO2sensors and signaling mechanisms, includinght1,mpk12/mpk4‐gc, andcbc1/cbc2abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis.We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2assimilation and stomatal CO2sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway.
more »
« less
Absence of carbonic anhydrase in chloroplasts affects C 3 plant development but not photosynthesis
The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout linesΔβ-ca1andΔβ-ca5had no striking phenotypic differences compared to wild type (WT) plants,Δβ-ca1ca5leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development ofΔβ-ca1ca5plants normalized at 9,000 ppm CO2. Leaves ofΔβ-ca1ca5mutants and WT that had matured in high CO2had identical CO2fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. EmergingΔβ-ca1ca5leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT.Δβ-ca1ca5seedling germination and development is negatively affected at ambient CO2. Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented theΔβ-ca1ca5mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, whileΔβ-ca1andΔβ-ca1ca5plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3plant tobacco.
more »
« less
- Award ID(s):
- 1642386
- PAR ID:
- 10286431
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 33
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2107425118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growthnull (Ed.)Arabidopsis AINTEGUMENTA (ANT), an AP2 transcription factor, is known to control plant growth and floral organogenesis. In this study, our transcriptome analysis and in situ hybridization assays of maize embryonic leaves suggested that maize ANT1 (ZmANT1) regulates vascular development. To better understand ANT1 functions, we determined the binding motif of ZmANT1 and then showed that ZmANT1 binds the promoters of millet SCR1 , GNC , and AN3 , which are key regulators of Kranz anatomy, chloroplast development, and plant growth, respectively. We generated a mutant with a single-codon deletion and two frameshift mutants of the ANT1 ortholog in the C4 millet Setaria viridis by the CRISPR/Cas9 technique. The two frameshift mutants displayed reduced photosynthesis efficiency and growth rate, smaller leaves, and lower grain yields than wild-type (WT) plants. Moreover, their leaves sporadically exhibited distorted Kranz anatomy and vein spacing. Conducting transcriptomic analysis of developing leaves in the WT and the three mutants we identified differentially expressed genes (DEGs) in the two frameshift mutant lines and found many down-regulated DEGs enriched in photosynthesis, heme, tetrapyrrole binding, and antioxidant activity. In addition, we predicted many target genes of ZmANT1 and chose 13 of them to confirm binding of ZmANT1 to their promoters. Based on the above observations, we proposed a model for ANT1 regulation of cell proliferation and leaf growth, vascular and vein development, chloroplast development, and photosynthesis through its target genes. Our study revealed biological roles of ANT1 in several developmental processes beyond its known roles in plant growth and floral organogenesis.more » « less
-
Summary High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C3plants exit leaves in the dark. In the light, C3species use a small portion of xylem‐transported CO2for leaf photosynthesis. However, it is not known if xylem‐transported CO2will exit leaves in the dark or be used for photosynthesis in the light in Kranz‐type C4plants.Cut leaves ofAmaranthus hypochondriacuswere placed in one of three solutions of [NaH13CO3] dissolved in KCl water to measure the efflux of xylem‐transported CO2exiting the leaf in the dark or rates of assimilation of xylem‐transported CO2* in the light, in real‐time, using a tunable diode laser absorption spectroscope.In the dark, the efflux of xylem‐transported CO2increased with increasing rates of transpiration and [13CO2*]; however, rates of13CeffluxinA. hypochondriacuswere lower compared to C3species. In the light,A. hypochondriacusfixed nearly 75% of the xylem‐transported CO2supplied to the leaf.Kranz anatomy and biochemistry likely influence the efflux of xylem‐transported CO2out of cut leaves ofA. hypochondriacusin the dark, as well as the use of xylem‐transported CO2* for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz‐type C4species over C3species.more » « less
-
Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response.more » « less
-
Abstract Plants with crassulacean acid metabolism (CAM) are increasing in distribution and abundance in drylands worldwide, but the underlying drivers remain unknown. We investigate the impacts of extreme drought and CO2enrichment on the competitive relationships between seedlings ofCylindropuntia imbricata(CAM species) andBouteloua eriopoda(C4grass), which coexist in semiarid ecosystems across the Southwestern United States. Our experiments under altered water and CO2water conditions show thatC. imbricatapositively responded to CO2enrichment under extreme drought conditions, whileB. eriopodadeclined from drought stress and did not recover after the drought ended. Conversely, in well‐watered conditionsB. eriopodahad a strong competitive advantage onC. imbricatasuch that the photosynthetic rate and biomass (per individual) ofC. imbricatagrown withB. eriopodawere lower relative to when growing alone. A meta‐analysis examining multiple plant families across global drylands shows a positive response of CAM photosynthesis and productivity to CO2enrichment. Collectively, our results suggest that under drought and elevated CO2concentrations, projected with climate change, the competitive advantage of plant functional groups may shift and the dominance of CAM plants may increase in semiarid ecosystems.more » « less
An official website of the United States government
