skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Timing of hydrocarbon entrapment in the eastern foothills of the Eastern Cordillera of Colombia
The eastern foothills in the Colombian Eastern Cordillera have been an important oil-producing region since the discovery of the Cupiagua and Cusiana fields. Three organic-rich units are considered to be the main source rocks. The Aptian Fómeque and the Cenomanian-Coniacian Chipaque Formations comprise a siliciclastic to locally carbonate shallow marine shelf succession with type-II kerogen, whereas the Paleocene Los Cuervos Formation consists of marginal marine to nonmarine siliciclastic rocks with type-III kerogen. We modeled the petroleum systems of these three source units to characterize the hydrocarbon generation-accumulation processes within the basin. The structural record of the Eastern Cordillera shows that the most important tectonic event began in early Oligocene with contractional deformation along the Soapaga through Guaicaramo faults during early Miocene, culminating during the Pliocene with the Cusiana and Yopal faults. These variable rates of burial and exhumation resulted in contrasting time-temperature histories for each of the source rocks. The Fómeque Formation reached the oil window during the Paleocene in the south and the Eocene to the north. In contrast, the Chipaque Formation generation started during Early Oligocene in the south and by Late Oligocene to the north. Conversely, maturation for the Los Cuervos Formation was uniform along the foothills, reaching the oil window during Late Oligocene. Charge history modeling suggested that the Albian sandstones reservoirs were filled between Oligocene to Miocene. In contrast, the proven reservoirs in the area (the Upper Cretaceous, Paleocene, and Eocene sandstones) were filled by late Miocene, with a second episode of recent charge in the Eocene reservoirs, and perhaps active, from the Los Cuervos Formation. The results of this work proved that petroleum system modeling is useful not only to characterize generation-migration processes but it also can be used as a prediction tool in structurally complex areas such as the Colombian foothills.  more » « less
Award ID(s):
1925939
PAR ID:
10286477
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Interpretation
Volume:
9
Issue:
1
ISSN:
2324-8858
Page Range / eLocation ID:
T145 to T159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Ruby Mountains, East Humboldt Range and Wood Hills (REHW) of Elko County Nevada, one of the classic metamorphic core complexes of the Cordillera, preserves a protracted and episodic record of both ancient and modern crustal extension that has only recently been unraveled based on its thermochronometrically constrained cooling history. Extension began during the Late Eocene synchronously with a major pulse of intermediate to felsic magmatism preserved locally by plutonic rocks intruded into the REHW and regionally by widespread Late Eocene to early Oligocene volcanism (“the ignimbrite flare-up”). The Eocene-Oligocene event accommodated at least 15 km of extension concentrated in the northern half of the complex and associated with deposition in the Elko Basin to the west, a relatively thin (~1 km), broad sequence of Late Eocene lacustrine and related strata that contrasts with the younger sedimentation patterns represented by the narrower, thicker (up to 4+km), coarse clastics of the Miocene Humboldt Basin. Though locally significant, the Eocene-Oligocene extensional phase appears not to have been associated with broadly distributed regional extension, again contrasting with Miocene and younger events. The initial phase of extension slowed or halted by the mid-Oligocene, after which extension re-accelerated in the latest Oligocene to early Miocene (~25 – 21 Ma), correlative with deposition of a coarse clastic and lacustrine sequence known as the Clover Formation. This extensional phase propagated farther south than the earlier phase along the full length of the REHW. Extension likely slowed again between ~21 Ma and ~17.5 Ma, after which it abruptly re-accelerated through the Middle Miocene to ~10 Ma, synchronous with deposition of the thick, coarse clastics of the Humboldt Formation. Middle Miocene extension likely initiated with crustal-scale heating marking the impingement of the Yellowstone hot spot in NW Nevada. Sometime after 10 Ma, the interior of the core complex was transected by east-dipping normal faults that today define the steep eastern face of the Ruby Mountains and East Humboldt Range; these face west-dipping normal faults along the west flank of the Pequop Mountains and Spruce Mountains. Extension continues today at a rate of ~1 mm/yr as represented by the 2008 MW 6.0 Wells Earthquake. 
    more » « less
  2. The south-central Chile and Argentina margin experienced a regional phase of extensional tectonics during the Oligocene–early Miocene, forming several basins across the forearc, Andean Cordillera, and retroarc regions. These basins accumulated thick successions of volcanic and sedimentary rocks. Subsequently, Neogene contractional tectonics led to the development of the current Andean Cordillera and the deposition of synorogenic clastic deposits in foreland basins. Traditionally, the Cura Mallín Formation, comprising a lower volcanic unit (CMV) and an upper sedimentary unit (CMS), has been interpreted to have formed during the Oligocene–early Miocene extensional phase. However, some studies propose deposition of the CMS in a foreland basin during the early–late Miocene. To unravel the transition from extensional to contractional tectonics in the Andes of south-central Chile and Argentina, we conducted new geochronological analyses (U-Pb, LA-ICP-MS) and integrated these results with structural, stratigraphic, and sedimentological observations in key sections within the CMS and the overlying Trapa-Trapa Formation in the Principal Cordillera along the Chile-Argentina border (37°–38°S). Our findings indicate that only the lower part of the CMS was deposited in an extensional setting, as evidenced by the presence of an inverted extensional wedge dated at ∼20 Ma. The middle-upper CMS (∼19 to 9 Ma) and contemporaneous units to the east exhibit evidence of syncontractional deformation, suggesting deposition in a foreland basin generated by shortening of the western Principal Cordillera. Around 9 Ma, uplift of the Agrio and Chos Malal fold and thrust belts, east of the Principal Cordillera, led to segmentation of the foreland basin. The Trapa Trapa Formation was deposited in a hinterland basin, with sediment sourced from the east. After ∼6.5 Ma, major contractional deformation shifted westward, resulting in intense folding of the CMS and Trapa Trapa Formation and subsequent thrusting of the western Principal Cordillera over the Central Depression. Our study suggests that deformation progressed toward the eastern foreland during the early to late Miocene and then shifted toward the western forearc during the late Miocene to Pleistocene. 
    more » « less
  3. Transantarctic Mountains and one at Carapace Nunatak, south Victoria Land. Four consist of Kirkpatrick Basalt lavas alone, two comprise Kirkpatrick lavas with associated pyroclastic rocks, one consists of Hanson Formation beds and Kirkpatrick lavas, and one involves Fremouw Formation strata. One possible block, of uncertain origin, consists only of Hanson Formation beds. All rocks comprising the displaced blocks, except one, are Early Jurassic in age. The exception is the inferred slide involving the Triassic Fremouw beds. The locations of some landslides are consistent with emplacement on present-day topography, which has been little modified since the middle Miocene, but the time of emplacement of others is either Oligocene to pre-middle Miocene or pre-dates the onset of glaciation in Eocene/ Oligocene time. The older landslides reflect fortuitous preservation of an ancient landscape not unlike that of today, one dominated by horizontal beds consisting of resistant dolerite sills and quartz-rich sandstones alternating with intervals of weak fine-grained sedimentary beds, and capped by basalt lavas. The landslides are interpreted to document three stages in landscape evolution: a pre-glaciation semi-arid landscape, an early warm-based glacial environment, and a late cold-based glacial setting. 
    more » « less
  4. Koutz, F.R.; Pennell, W.M. (Ed.)
    A key question in the tectonic evolution of the Sevier orogenic belt of the western U.S. Cordillera is when and why the overthickened crust of the hinterland plateau began to collapse giving rise to the modern extensional tectonic regime. Delineating the exhumation history of the Ruby Mountains, East Humboldt Range and Wood Hills metamorphic core complex (REHW) of Elko County, Nevada offers important evidence bearing on this question. Recent work from the northern REHW records a three-phase extensional history: (1) ~15–20 km of Late Eocene extension, (2) a second pulse of extension of similar rate and magnitude beginning in the late Oligocene or early Miocene (by 21 Ma) and continuing to approximately 11 Ma, and (3) the Basin-and-Range extensional regime continuing at reduced rate to today. In contrast, previous work from the Harrison Pass area in the southern REHW does not recognize an imprint from the Late Eocene phase of extension, and places the onset of the second extensional phase after ~17 Ma. New intermediate closure temperature thermochronology from the Harrison Pass pluton indicates that it remained at significant depth until at least ~25 Ma, severely limiting any possible Late Eocene to early Oligocene extension, consistent with previous interpretations. However, the new results challenge the previously proposed post-17 Ma onset for extension at Harrison Pass. New, intermediate closure temperature (U-Th)/He titanite and zircon ages from the eastern half of the pluton almost entirely predate 17 Ma and instead support an extensional onset bracketed between the Early Miocene (21 Ma) and the late Oligocene (25 Ma). Integrating potassium feldspar 40Ar/39Ar multi-diffusion domain modeling with the lower closure temperature thermochronometric systems reveals an inflection to faster cooling rates after ~25 Ma and further supports this inference. Nevertheless, all but the farthest east and structurally shallowest of the samples also show a second inflection point at ~17 Ma. We argue that previously reported apatite fission track and apatite (U-Th)/He data captured this post-17.5 Ma reacceleration event but missed the earlier, late Oligocene-early Miocene extension recorded by the higher temperature thermochronometers. The latest Oligocene to early Miocene extensional phase correlates with extensional events reported from southern Nevada and Arizona that may relate to the relaxation of contractional boundary conditions during the early evolution of the San Andreas margin. However, the post-17.5 Ma resurgence in extension probably correlates with large-scale crustal weakening across the northern Basin and Range province attending the arrival of the Yellowstone thermal plume. 
    more » « less
  5. F.R. Koutz W.M. Pennell (Ed.)
    A key question in the tectonic evolution of the Sevier orogenic belt of the western U.S. Cordillera is when and why the overthickened crust of the hinterland plateau began to collapse giving rise to the modern extensional tectonic regime. Delineating the exhumation history of the Ruby Mountains, East Humboldt Range and Wood Hills metamorphic core complex (REHW) of Elko County, Nevada offers important evidence bearing on this question. Recent work from the northern REHW records a three-phase extensional history: (1) ~15–20 km of Late Eocene extension, (2) a second pulse of extension of similar rate and magnitude beginning in the late Oligocene or early Miocene (by 21 Ma) and continuing to approximately 11 Ma, and (3) the Basin-and-Range extensional regime continuing at reduced rate to today. In contrast, previous work from the Harrison Pass area in the southern REHW does not recognize an imprint from the Late Eocene phase of extension, and places the onset of the second extensional phase after ~17 Ma. New intermediate closure temperature thermochronology from the Harrison Pass pluton indicates that it remained at significant depth until at least ~25 Ma, severely limiting any possible Late Eocene to early Oligocene extension, consistent with previous interpretations. However, the new results challenge the previously proposed post-17 Ma onset for extension at Harrison Pass. New, intermediate closure temperature (U-Th)/He titanite and zircon ages from the eastern half of the pluton almost entirely predate 17 Ma and instead support an extensional onset bracketed between the Early Miocene (21 Ma) and the late Oligocene (25 Ma). Integrating potassium feldspar 40Ar/39Ar multi-diffusion domain modeling with the lower closure temperature thermochronometric systems reveals an inflection to faster cooling rates after ~25 Ma and further supports this inference. Nevertheless, all but the farthest east and structurally shallowest of the samples also show a second inflection point at ~17 Ma. We argue that previously reported apatite fission track and apatite (U-Th)/He data captured this post-17.5 Ma reacceleration event but missed the earlier, late Oligocene-early Miocene extension recorded by the higher temperature thermochronometers. The latest Oligocene to early Miocene extensional phase correlates with extensional events reported from southern Nevada and Arizona that may relate to the relaxation of contractional boundary conditions during the early evolution of the San Andreas margin. However, the post-17.5 Ma resurgence in extension probably correlates with large-scale crustal weakening across the northern Basin and Range province attending the arrival of the Yellowstone thermal plume. 
    more » « less