Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes.
- Award ID(s):
- 2033343
- PAR ID:
- 10286533
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Here we report that in situ reconstructed Cu two-dimensional (2D) defects in CuO nanowires during CO 2 RR lead to significantly enhanced activity and selectivity of C 2 H 4 compared to the CuO nanoplatelets. Specifically, the CuO nanowires achieve high faradaic efficiency of 62% for C 2 H 4 and a partial current density of 324 mA cm −2 yet at a low potential of −0.56 V versus a reversible hydrogen electrode. Structural evolution characterization and in situ Raman spectra reveal that the high yield of C 2 H 4 on CuO nanowires is attributed to the in situ reduction of CuO to Cu followed by structural reconstruction to form 2D defects, e.g. , stacking faults and twin boundaries, which improve the CO production rate and *CO adsorption strength. This finding may provide a paradigm for the rational design of nanostructured catalysts for efficient CO 2 electroreduction to C 2 H 4 .more » « less
-
Ethylene is well known as the primary product of CO2reduction at Cu electrocatalysts using zero-gap membrane electrode assembly cells with gas diffusion cathodes. Other types of Cu electrocatalysts including oxide-derived Cu, CuSn and CuSe yield relatively more C2oxygenates; however, the mechanisms for C2product selectivity are not well established. This work considers selectivity trends of Cu-P0.065, Cu-Sn0.03, and Cu2Se electrocatalysts made using a standard one pot synthesis method. Results show that Cu-P0.065electrocatalysts (Cu
δ += 0.13) retain ethylene as a primary product with relatively higher Faradaic efficiencies (FE = 43% at 350 mA cm−2) than undoped Cu electrocatalysts (FE = 31% at 350 mA cm−2) at the same current density. The primary CO2reduction product at Cu-Sn0.03(Cuδ += 0.27) electrocatalysts shifts to ethanol (FE = 48% at 350 mA cm−2) while CO2reduction at Cu2Se (Cuδ += 0.47) electrocatalysts favor acetate production (FE = 40% at 350 mA cm−2). Based on these results, we propose a common acetyl intermediate and a mechanism for selective formation of ethylene, ethanol or acetate based on the degree of partial positive charge (δ + ) of Cu reaction sites. -
Abstract Closing the anthropogenic carbon cycle by converting CO2into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N‐doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at −0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2evolution reaction (HER) to compete with the CO2reduction reaction (CO2RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size‐dependent CO2reduction for various sizes of Ni metal catalysts.
-
Abstract Closing the anthropogenic carbon cycle by converting CO2into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N‐doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at −0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2evolution reaction (HER) to compete with the CO2reduction reaction (CO2RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size‐dependent CO2reduction for various sizes of Ni metal catalysts.