skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One-Step Ahead Prediction of Angular Momentum about the Contact Point for Control of Bipedal Locomotion: Validation in a LIP-inspired Controller
Ultimately, feedback control is about making adjustments using current state information in order to meet an objective in the future. In the control of bipedal locomotion, linear velocity of the center of mass has been widely accepted as the primary variable around which feedback control objectives are formulated. In this paper, we argue that it is easier to predict the one-step ahead evolution of angular momentum about the contact point than it is to make a similar prediction for linear velocity, and hence it provides a superior quantity for feedback control. So as not to confuse the benefits of predicting angular momentum with any other control design decisions, we reformulate the standard LIP model in terms of angular momentum and show how to regulate swing foot touchdown position at the end of the current step so as to meet an angular momentum objective at the end of the next step. We implement the resulting feedback controller on the 20 degreeof- freedom bipedal robot, Cassie Blue, where each leg accounts for nearly one-third of the robot’s total mass of 32 Kg. Under this controller, the robot achieves fast walking, rapid turning while walking, large disturbance rejection, and locomotion on rough terrain.  more » « less
Award ID(s):
1808051
PAR ID:
10286557
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a hierarchical framework for bipedal locomotion that combines a Reinforcement Learning (RL)-based high-level (HL) planner policy for the online generation of task space commands with a model-based low-level (LL) controller to track the desired task space trajectories. Different from traditional end-to-end learning approaches, our HL policy takes insights from the angular momentum-based linear inverted pendulum (ALIP) to carefully design the observation and action spaces of the Markov Decision Process (MDP). This simple yet effective design creates an insightful mapping between a low-dimensional state that effectively captures the complex dynamics of bipedal locomotion and a set of task space outputs that shape the walking gait of the robot. The HL policy is agnostic to the task space LL controller, which increases the flexibility of the design and generalization of the framework to other bipedal robots. This hierarchical design results in a learning-based framework with improved performance, data efficiency, and robustness compared with the ALIP model-based approach and state-of-the-art learning-based frameworks for bipedal locomotion. The proposed hierarchical controller is tested in three different robots, Rabbit, a five-link underactuated planar biped; Walker2D, a seven-link fully-actuated planar biped; and Digit, a 3D humanoid robot with 20 actuated joints. The trained policy naturally learns human-like locomotion behaviors and is able to effectively track a wide range of walking speeds while preserving the robustness and stability of the walking gait even under adversarial conditions. 
    more » « less
  2. We present a framework to generate periodic trajectory references for a 3D under-actuated bipedal robot, using a linear inverted pendulum (LIP) based controller with adaptive neural regulation. We use the LIP template model to estimate the robot's center of mass (CoM) position and velocity at the end of the current step, and formulate a discrete controller that determines the next footstep location to achieve a desired walking profile. This controller is equipped on the frontal plane with a Neural-Network-based adaptive term that reduces the model mismatch between the template and physical robot that particularly affects the lateral motion. Then, the foot placement location computed for the LIP model is used to generate task space trajectories (CoM and swing foot trajectories) for the actual robot to realize stable walking. We use a fast, real-time QP-based inverse kinematics algorithm that produces joint references from the task space trajectories, which makes the formulation independent of the knowledge of the robot dynamics. Finally, we implemented and evaluated the proposed approach in simulation and hardware experiments with a Digit robot obtaining stable periodic locomotion for both cases. 
    more » « less
  3. The Angular-Momentum Linear Inverted Pendulum (ALIP) model is a promising motion planner for bipedal robots. However, it relies on two assumptions: (1) the robot has point-contact feet or passive ankles, and (2) the angular momentum around the center of mass, known as centroidal angular momentum, is negligible. This paper addresses the question of whether the ALIP paradigm can be applied to more general bipedal systems with complex foot geometry (e.g., flat feet) and nontrivial torso/limb inertia and mass distribution (e.g., non-centralized arms). In such systems, the dynamics introduce non-negligible centroidal momentum and contact wrenches at the feet, rendering the assumptions of the ALIP model invalid. This paper presents the ALIP planner for general bipedal robots with non-point-contact feet through the use of a task-space whole-body controller that regulates centroidal momentum, thereby ensuring that the robot's behavior aligns with the desired template dynamics. To demonstrate the effectiveness of our proposed approach, we conduct simulations using the Sarcos©Guardian® XO®robot, which is a hybrid humanoid/exoskeleton with large, offset feet. The results demonstrate the practicality and effectiveness of our approach in achieving stable and versatile bipedal locomotion. 
    more » « less
  4. Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely underexplored. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP. The middle layer translates the desired global behaviors into the robot’s full-body reference trajectories for all directly actuated degrees of freedom, while the lowest layer exponentially tracks those reference trajectories based on the full-order, hybrid, nonlinear robot model. Simulations confirm that the proposed framework ensures stable walking of a planar underactuated biped under different swaying DRS motions and gait types. 
    more » « less
  5. Locomotion on dynamic rigid surface (i.e., rigid surface accelerating in an inertial frame) presents complex challenges for controller design, which are essential to address for deploying humanoid robots in dynamic real-world environments such as moving trains, ships, and airplanes. This paper introduces a real-time, provably stabilizing control approach for humanoid walking on periodically swaying rigid surface. The first key contribution is an analytical extension of the classical angular momentum-based linear inverted pendulum model from static to swaying grounds whose motion period may be different than the robot’s gait period. This extension results in a time-varying, nonhomogeneous robot model, which is fundamentally different from the existing pendulum models. We synthesize a discrete footstep control law for the model and derive a new set of sufficient stability conditions that verify the controller’s stabilizing effect. Finally, experiments conducted on a Digit humanoid robot, both in simulations and on hardware, demonstrate the framework’s effectiveness in addressing bipedal locomotion on swaying ground, even under uncertain surface motions and unknown external pushes. 
    more » « less