skip to main content


Title: Effects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes
Abstract

The current work presents new experimental autoignition and speciation data on the twocis‐hexene isomers:cis‐2‐hexene andcis‐3‐hexene. The new data provide insights on the effects of carbon‐carbon double bond location and stereoisomeric structures on ignition delay times and reaction pathways for linear hexene isomers. Experiments were performed using the University of Michigan rapid compression facility to determine ignition delay times from pressure‐time histories. Stoichiometric (ϕ = 1.0) mixtures at dilution levels of inert gas to O2 = 7.5:1 (mole basis) were investigated at an average pressure of 11 atm and temperatures from 809 to 1052 K. Speciation experiments were conducted atT = 900 K for the twocis‐hexene isomers, where fast‐gas sampling and gas chromatography were used to identify and quantify the twocis‐hexene isomers and stable intermediate species. The ignition delay time data showed negligible sensitivity to the location of the carbon‐carbon double bond and the stereoisomeric structure (cis‐trans), and the species data showed no correlation with the stereoisomeric structure, but there was a strong correlation of some of the measured species with the location of the double bond in the hexene isomer. In particular, 2‐hexene showed strong selectivity to propene, acetaldehyde, and 1,3‐butadiene, and 3‐hexene showed selectivity to propanal. Model predictions of ignition delay times were in excellent agreement with the experimental data. There was generally good agreement for the model predictions of the species data for 2‐hexene; however, the mechanism overpredicted some of the small aldehyde (C2‐C4) species for 3‐hexene. Reaction pathway analysis indicates the hexenes are almost exclusively consumed by H‐atom abstraction reactions at the conditions studied (P = 11 atm,T > 900 K), and not by C3‐C4scission as observed in high‐temperature (>1300 K) hexene ignition studies. Improved estimates for 3‐hexene + OH reactions may improve model predictions for the species measured in this work.

 
more » « less
Award ID(s):
1701343
NSF-PAR ID:
10454750
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Chemical Kinetics
Volume:
53
Issue:
2
ISSN:
0538-8066
Page Range / eLocation ID:
p. 287-298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Triplet excited states of organic matter are formed when colored organicmatter (i.e., brown carbon) absorbs light. While these “triplets” can beimportant photooxidants in atmospheric drops and particles (e.g., theyrapidly oxidize phenols), very little is known about their reactivity towardmany classes of organic compounds in the atmosphere. Here we measure thebimolecular rate constants of the triplet excited state of benzophenone(3BP), a model species, with 17 water-solubleC3C6 alkenes that have either been found in theatmosphere or are reasonable surrogates for identified species. Measured rateconstants (kALK+3BP) vary by a factor of 30 and are in therange of (0.24–7.5) ×109 M−1 s−1. Biogenic alkenesfound in the atmosphere – e.g., cis-3-hexen-1-ol, cis-3-hexenyl acetate, andmethyl jasmonate – react rapidly, with rate constants above 1×109 M−1 s−1. Rate constants depend on alkene characteristicssuch as the location of the double bond, stereochemistry, and alkylsubstitution on the double bond. There is a reasonable correlation betweenkALK+3BP and the calculated one-electron oxidation potential(OP) of the alkenes (R2=0.58); in contrast, rate constants are notcorrelated with bond dissociation enthalpies, bond dissociation freeenergies, or computed energy barriers for hydrogen abstraction. Using the OPrelationship, we estimate aqueous rate constants for a number of unsaturatedisoprene and limonene oxidation products with 3BP: values are inthe range of (0.080–1.7) ×109 M−1 s−1, withgenerally faster values for limonene products. Rate constants with lessreactive triplets, which are probably more environmentally relevant, arelikely roughly 25 times slower. Using our predicted rate constants, alongwith values for other reactions from the literature, we conclude thattriplets are probably minor oxidants for isoprene- and limonene-relatedcompounds in cloudy or foggy atmospheres, except in cases in which the tripletsare very reactive.

     
    more » « less
  2. null (Ed.)
    Autoignition delay time data are one important means to develop, quantify, and validate fundamental understanding of combustion chemistry at low temperatures (T<1200 K). However, low-temperature chemistry often has higher uncertainties and scatter in the experimental data compared with high-temperature ignition data (T>1200 K). In this study, autoignition properties of propane and oxygen mixtures were investigated using the University of Michigan rapid compression facility in order to understand the effects of ignition regimes on low-temperature ignition data. For the first time for propane, autoignition delay times were determined from pressure histories, and autoignition characteristics were simultaneously recorded using high-speed imaging of the test section through a transparent end-wall. Propane mixtures with fuel-to-O2 equivalence ratios of ϕ = 0.25 and ϕ = 0.5 and O2-to-inert gas molar ratios of 1:3.76 were studied over the pressure range of 8.9 to 11.3 atm and the temperature range of 930 – 1070 K. The results showed homogeneous or strong autoignition occurred for all ϕ = 0.25 experiments, and inhomogeneous or mixed autoignition occurred for all ϕ = 0.5 experiments. While a limited temperature range is covered in the study, importantly the data span predicted transitions in autoignition behavior, allowing validation of autoignition regime hypotheses. Specifically, the results agree well with strong-autoignition limits proposed based on the Sankaran Criterion. The autoignition delay time data at the strong-ignition conditions are in excellent agreement with predictions using a well-validated detailed reaction mechanism from the literature and a zero-dimensional modeling assumption. However, the experimental data at the mixed autoignition conditions were systematically faster than the model predictions, particularly at lower temperatures (T< ~970 K). The results are an important addition to the growing body of data in the literature that show mixed autoignition phenomena are important sources of the higher scatter observed in the low-temperature autoignition data for propane and other fuels. The results are discussed in terms of different methods to capture the effects of pre-autoignition heat release associated with mixed autoignition conditions and thereby address some of the discrepancies between kinetic modeling and experimental measurements. 
    more » « less
  3. Abstract

    The development and refinement of NOx chemical kinetic mechanisms have been instrumental in understanding and reducing NOx formation. However, relatively little work has been performed with NOx species as the oxidizer, and such experiments can provide unique insights into NOx kinetics. Furthermore, speciation data can often provide useful information that complements global measurements such as ignition delay times in facilitating mechanism refinement. To provide such speciation data in the H2‐NO2system, H2O measurements were performed using a fixed‐wavelength, direct absorption laser diagnostic near 1.39 µm behind reflected shock waves in fuel‐lean, near‐stoichiometric, and fuel‐rich mixtures of H2and NO2highly diluted in argon. Experiments were performed between 917 and 1782 K near atmospheric pressure. The H2O profiles obtained herein are markedly different from those using O2as the oxidizer obtained in a previous study. The GRI 3.0 mechanism was found to greatly underestimate the H2O formation, whereas two modern mechanisms were found to predict the H2O formation quite accurately except at colder temperatures for fuel‐rich conditions. Explanations for the differences between these mechanisms are given and discussed, with the conclusion that older mechanisms such as GRI 3.0 should not be used to model hydrocarbon/NOx combustion chemistry as they are lacking several key reactions and species, namely NO3and HONO. The discrepancy between models and data at lower temperatures could not be reconciled even when modifying two of the most‐sensitive reaction rates. To the best of the authors’ knowledge, this study presents the first shock‐tube speciation study in the H2‐NO2system.

     
    more » « less
  4. Abstract

    Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 ac; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out4 ca′and a conformer ofin,out4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared.

     
    more » « less
  5. Abstract

    Infrared (IR) and Raman spectroscopic features of silicate glasses are often interpreted based on the analogy with those of smaller molecules, molecular clusters, or crystalline counterparts; this study tests the accuracy and validity of these widely cited peak assignment schemes by comparing vibrational spectral features with bond parameters of the glass network created by molecular dynamics (MD) simulations. A series of sodium silicate glasses with compositions of [Na2O]x[Al2O3]2[SiO2]98−xwithx = 7, 12, 17, and 22 were synthesized and analyzed with IR and Raman. A silica glass substrate and a crystalline quartz were also analyzed for comparison. Glass structures with the same compositions were generated with MD simulations using three types of potentials: fixed partial charge pairwise (Teter), partial diffuse charge potential (MGFF), and bond order‐based charge transfer potential (ReaxFF). The comparison of simulated and experimental IR spectra showed that, among these three potentials tested, ReaxFF reproduces the concentration dependence of spectral features closest to the experimentally observed trend. Thus, the bond length and angle distributions as well as Si–Qnspecies and ring size distributions of silica and sodium silicate glasses were obtained from ReaxFF‐MD simulations and further compared with the peak assignment or deconvolution schemes—which have been widely used since 1970s and 1980s—(a) correlation between the IR peak position in the Si–O stretch region (1050‐1120 cm−1) and the Si–O–Si bond angle; (b) deconvolution of the Raman bands in the Si–O stretch region with theQnspeciation; and (c) assignment of the Raman bands in the 420‐600 cm−1region to the bending modes of (SiO)nrings with different sizes (typically, n = 3‐6). The comparisons showed that none of these widely used methods is congruent with the bond parameters or structures of silicate glass networks produced via ReaxFF‐MD simulations. This finding invokes that the adequacy of these spectral interpretation methods must be questioned. Alternative interpretations are proposed, which are to be tested independently in future studies.

     
    more » « less