skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrologic Alteration and Enhanced Microbial Reductive Dissolution of Fe(III) (hydr)oxides Under Flow Conditions in Fe(III)-Rich Rocks: Contribution to Cave-Forming Processes
Previous work demonstrated that microbial Fe(III)-reduction contributes to void formation, and potentially cave formation within Fe(III)-rich rocks, such as banded iron formation (BIF), iron ore and canga (a surficial duricrust), based on field observations and static batch cultures. Microbiological Fe(III) reduction is often limited when biogenic Fe(II) passivates further Fe(III) reduction, although subsurface groundwater flow and the export of biogenic Fe(II) could alleviate this passivation process, and thus accelerate cave formation. Given that static batch cultures are unlikely to reflect the dynamics of groundwater flow conditions in situ , we carried out comparative batch and column experiments to extend our understanding of the mass transport of iron and other solutes under flow conditions, and its effect on community structure dynamics and Fe(III)-reduction. A solution with chemistry approximating cave-associated porewater was amended with 5.0 mM lactate as a carbon source and added to columns packed with canga and inoculated with an assemblage of microorganisms associated with the interior of cave walls. Under anaerobic conditions, microbial Fe(III) reduction was enhanced in flow-through column incubations, compared to static batch incubations. During incubation, the microbial community profile in both batch culture and columns shifted from a Proteobacterial dominance to the Firmicutes, including Clostridiaceae, Peptococcaceae, and Veillonellaceae, the latter of which has not previously been shown to reduce Fe(III). The bacterial Fe(III) reduction altered the advective properties of canga-packed columns and enhanced permeability. Our results demonstrate that removing inhibitory Fe(II) via mimicking hydrologic flow of groundwater increases reduction rates and overall Fe-oxide dissolution, which in turn alters the hydrology of the Fe(III)-rich rocks. Our results also suggest that reductive weathering of Fe(III)-rich rocks such as canga, BIF, and iron ores may be more substantial than previously understood.  more » « less
Award ID(s):
1645180
PAR ID:
10286953
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most cave formation requires mass separation from a host rock in a process that operates outward from permeable pathways to create the cave void. Given the poor solubility of Fe(III) phases, such processes are insufficient to account for the significant iron formation caves (IFCs) seen in Brazilian banded iron formations (BIF) and associated rock. In this study we demonstrate that microbially-mediated reductive Fe(III) dissolution is solubilizing the poorly soluble Fe(III) phases to soluble Fe(II) in the anoxic zone behind cave walls. The resultant Fe(III)-depleted material (termedsub muros) is unable to maintain the structural integrity of the walls and repeated rounds of wall collapse lead to formation of the cave void in an active, measurable process. This mechanism may move significant quantities of Fe(II) into ground water and may help to explain the mechanism of BIF dissolution and REE enrichment in the generation of canga. The role of Fe(III) reducing microorganism and mass separation behind the walls (outward-in, rather than inward-out) is not only a novel mechanism of speleogenesis, but it also may identify a previously overlooked source of continental Fe that may have contributed to Archaean BIF formation. 
    more » « less
  2. Banded iron formations (BIF) are chemically precipitated sediments that can record Archean ocean geochemistry. BIFs are laminated silica- and iron-rich deposits that host a range of iron(II, III) minerals, including hematite, magnetite, siderite, greenalite, minnesotaite, and stilpnomelane. This diverse mineralogical assemblage reflects secondary mineralization reactions due to diagenesis and/or post-depositional alteration. While petrographic observations of BIFs sparingly contain the iron silicate greenalite, recent evidence of greenalite nanoparticles preserved in early-mineralizing BIF chert suggest this mineral was a primary phase in BIF progenitor sediments. Therefore, it is critical to investigate the formation and alteration of greenalite to constrain the Archean ocean environment and help unravel post-depositional processes. To examine how iron silicates precipitate and then crystallize and/or transform during diagenesis, we simulated these two processes under Archean ocean conditions. We first precipitated a poorly ordered Fe-rich serpentine with subsidiary ferrihydrite at neutral pH by performing in situ Fe(II) oxidation experiments at 25 °C in the presence of silica. Subjected to simulated diagenesis at 80 °C, the rudimentary Fe-phyllosilicate transformed into a crystalline phyllosilicate characterized as 30% cronstedtite and 70% greenalite accompanied by magnetite and persistent ferrihydrite. At temperatures ≤150 °C, we continued to observe ferrihydrite, increased magnetite formation, and elevated incorporation of Mg into the phyllosilicate as it further recrystallized into Mg-greenalite. Our findings demonstrate a possible formation mechanism of early silicates through partial Fe(II) oxidation and support petrographic observations that magnetite likely mineralizes during diagenesis. Additionally, we suggest that Mg contents in BIF iron phyllosilicates could serve as a tracer for diagenesis, with Mg signaling phyllosilicate-fluid interactions at elevated temperatures. Ultimately, our experiments help reveal how initial iron-silica coprecipitates are altered during diagenesis, providing novel insights into the interpretation of greenalite and magnetite in ancient BIF assemblages. 
    more » « less
  3. Abstract Microorganisms drive many aspects of organic carbon cycling in thawing permafrost soils, but the compositional trajectory of the post-thaw microbiome and its metabolic activity remain uncertain, which limits our ability to predict permafrost–climate feedbacks in a warming world. Using quantitative metabarcoding and metagenomic sequencing, we determined relative and absolute changes in microbiome composition and functional gene abundance during thaw incubations of wet sedge tundra collected from northern Alaska, USA. Organic soils from the tundra active-layer (0–50 cm), transition-zone (50–70 cm), and permafrost (70+ cm) depths were incubated under reducing conditions at 4 °C for 30 days to mimic an extended thaw duration. Following extended thaw, we found that iron (Fe)-cycling Gammaproteobacteria, specifically the heterotrophic Fe(III)-reducing Rhodoferax sp. and chemoautotrophic Fe(II)-oxidizing Gallionella sp., increased by 3–5 orders of magnitude in absolute abundance within the transition-zone and permafrost microbiomes, accounting for 65% of community abundance. We also found that the abundance of genes for Fe(III) reduction (e.g., MtrE) and Fe(II) oxidation (e.g., Cyc1) increased concurrently with genes for benzoate degradation and pyruvate metabolism, in which pyruvate is used to generate acetate that can be oxidized, along with benzoate, to CO2 when coupled with Fe(III) reduction. Gene abundance for CH4 metabolism decreased following extended thaw, suggesting dissimilatory Fe(III) reduction suppresses acetoclastic methanogenesis under reducing conditions. Our genomic evidence indicates that microbial carbon degradation is dominated by iron redox metabolism via an increase in gene abundance associated with Fe(III) reduction and Fe(II) oxidation during initial permafrost thaw, likely increasing microbial respiration while suppressing methanogenesis in wet sedge tundra. 
    more » « less
  4. The kinetics of model contaminant 4-chloronitrobenzene (4-ClNB) reduction by Fe( ii ) in aqueous suspensions containing either or both goethite (α-FeOOH) nanoparticles and kaolinite (Al 2 Si 2 O 5 (OH) 4 ) were quantified to elucidate the effects of nonreactive clay minerals on the attenuation of nitroaromatic groundwater contaminants by iron oxide nanoparticles. Increasing the amount of kaolinite in the presence of goethite decreased the reduction rate of 4-ClNB and competitive Fe( ii ) adsorption on kaolinite occurred. Cryogenic transmission and scanning electron microscopy (cryo-TEM and cryo-SEM) images did not reveal significant loss of accessible reactive surface area as a result of heteroaggregation. Sequential-spike batch reactors revealed that in the presence of kaolinite, 4-ClNB reduction rate decreased by more than a factor of three with extended reaction as a result of kaolinite dissolution and subsequent incorporation of Al and Si in goethite or on the goethite surface. The reactive sites residing on the {110} faces were comparatively more reactive in the presence of a large loading of kaolinite, resulting in shorter and wider goethite particles after reaction. These results elucidate the mechanisms by which nonreactive clays affect the reactions of Fe( ii )/iron oxides in groundwater systems and indicate that nonreactive clays are not passive components. 
    more » « less
  5. Reduction of nitroaromatic compounds (NACs), an important class of groundwater pollutants, by Fe( ii ) associated with iron oxides, a highly reactive reductant in anoxic aquifers, has been studied widely, but there are significant differences between the well-controlled, batch reactor conditions of the laboratory and the complicated conditions encountered in the field. Continuous flow column reactors containing goethite-coated sand and aqueous carbonate buffer were continuously exposed to 0.05 mM 4-chloronitrobenzene (4-ClNB) and 0.5 mM Fe( ii ) to emulate more realistic scenarios and to allow study of the oxidative growth of goethite particles using both saturated and unsaturated flow conditions. The experiments were designed to test how attachment to a surface affected particle growth and how particle growth affected the extent of reaction over time. After reaction, particles from different sections of each column were collected, and the goethite was detached from the sand grains for characterization using transmission electron microscopy. The amount of oxidative growth varied as a function of distance from the column inlet, with the most growth observed at the inlet end (bottom) of the column. Similar to previous work using batch reactors, newly oxidized Fe( iii ) was mostly added to the goethite particle tips, resulting in up to an 81% increase in length under saturated flow and a 50% increase in length under unsaturated flow after 220 pore volumes. With saturated flow, reactant concentrations and the extent of the reaction are important factors determining the extent of mineral growth. For unsaturated column conditions, however, flow path substantially impacts mineral growth in the column. Reactors sacrificed after 220 pore volumes under saturated flow conditions resulted in an overall 70% increase in goethite mass while the unsaturated flow column resulted in a 40% increase in goethite mass, more variable mineral growth as a function of distance from the inlet, and overall, 50% less 4-ClNB conversion. The results demonstrate that quantitative characterization of oxidative mineral growth of goethite nanoparticles attached to an underlying mineral is practical and elucidates the major variables impacting the reactivity of mineral nanoparticles in contaminated groundwater systems. 
    more » « less