skip to main content


Title: Exploring Leveraging Points to Increase High School Students’ Identification with STEM: Differences Across Race/Ethnicities
This study intends to identify leverage points to increase Latinx high school students’ identification with STEM careers. We used multi-group structural equation modeling to analyze science identity survey data (N=1295) focusing on differences across race/ethnicity. Although Latinx students on average reported lower science activities participation and perception of science than their White and Asian American peers, the indirect effects from participation in science activities at home, school, and out-of-school consistently held for all racial/ethnic groups. Our findings suggest: (a) the importance of increasing Latinx students’ participation in science activities at home, science classrooms, and out-of-school programs, and (b) the need to strategically design the activities, including school science curricula, in ways that increase Latinx students’ self-perception in and with science.  more » « less
Award ID(s):
1846227
NSF-PAR ID:
10287049
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 AERA conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In response to the low representation of Latinx adults in STEM occupations, this community-based participatory action research study aims to increase the number of middle school youths developing STEM career identities and entering high school with the intention to pursue STEM careers. The students were provided with summer and after-school activities focusing on network science and career development curricula. Using a quasi-experimental pretest–posttest design and career narratives, this study examined the changes in STEM and career self-efficacy, as well as career identity. The results show improvements in self-efficacy, an increased number of youths with intentions of pursuing future STEM career opportunities, and deeper reflections on their talents and skills after program participation. This paper also describes the program development and implementation in detail, as well as the adaptations that resulted from COVID-19, for scholars and educators designing similar programs. This study provides promising evidence for the quality of STEM and career development lessons in supporting the emergence of a STEM career identity and self-efficacy.

     
    more » « less
  2. Background: There has been a dearth of research on intersectional identities in STEM, including the fields of computing and engineering. In computing education research, much work has been done on broadening participation, but there has been little investigation into how the field of computer science (CS) presents opportunities for students with strong intersectional identities. This study explores the strengths and connections among the unique identities and the symbiotic relationships that elementary Latina students hold in CS identity attainment. Purpose: The aim of this article is to better understand how predominantly low-income, multilingual Latina students experience identity development through the lens of diverse group membership. We examine how young Latinas, through their participation in a yearlong culturally and linguistically responsive CS curriculum, leverage their intersecting identities to rewrite the formula of what a computer scientist is and can be, leaving space to include and invite other strong identities as well. Research Design: An explanatory sequential mixed-methods design was used that analyzed data from predominantly low-income, multilingual Latinas in upper elementary grades, including pre- and post-CS identity surveys (N = 50) delivered before and after implementation of the curriculum, and eight individual semi-structured student interviews. Findings: We found that Latina students developed significantly stronger identification with the field of CS from the beginning to the end of the school year with regard to their experiences with CS, perception of themselves as computer scientists, family support for CS and school, and friend support for CS and school. Interviews revealed that perception of their CS ability greatly influenced identification with CS and that girls’ self-perceptions stemmed from their school, cultural, and home learning environments. Conclusion: Our results highlight the wealth of resources that Latinas bring to the classroom through their home- and community-based assets, which are characterized by intersecting group membership. Students did not report on the intersection between language and CS identity development, which warrants further investigation. 
    more » « less
  3. Background: There has been a dearth of research on intersectional identities in STEM, including the fields of computing and engineering. In computing education research, much work has been done on broadening participation, but there has been little investigation into how the field of computer science (CS) presents opportunities for students with strong intersectional identities. This study explores the strengths and connections among the unique identities and the symbiotic relationships that elementary Latina students hold in CS identity attainment. Purpose: The aim of this article is to better understand how predominantly lowincome, multilingual Latina students experience identity development through the lens of diverse group membership. We examine how young Latinas, through their participation in a yearlong culturally and linguistically responsive CS curriculum, leverage their intersecting identities to rewrite the formula of what a computer scientist is and can be, leaving space to include and invite other strong identities as well. Research Design: An explanatory sequential mixed-methods design was used that analyzed data from predominantly low-income, multilingual Latinas in upper elementary grades, including pre- and post-CS identity surveys (N = 50) delivered before and after implementation of the curriculum, and eight individual semistructured student interviews. Findings: We found that Latina students developed significantly stronger identification with the field of CS from the beginning to the end of the school year with regard to their experiences with CS, perception of themselves as computer scientists, family support for CS and school, and friend support for CS and school. Interviews revealed that perception of their CS ability greatly influenced identification with CS and that girls’ self-perceptions stemmed from their school, cultural, and home learning environments. Conclusion: Our results highlight the wealth of resources that Latinas bring to the classroom through their home- and community-based assets, which are characterized by intersecting group membership. Students did not report on the intersection between language and CS identity development, which warrants further investigation. 
    more » « less
  4. Recent discussions of making have focused on developing out-of-school makerspaces and activities to provide more equitable and enriching learning opportunities for youth. Yet school classrooms present a unique opportunity to help broaden access, diversify representation, and deepen participation in making. In turning to classrooms, we want to understand the crucial practices that teachers employ in broadening and deepening access to making. In this article, we investigate two high school teachers’ approaches in implementing a novel eight-week, electronic textiles unit within the Exploring Computer Science curriculum, where students designed wearable electronic textile projects with microcontrollers, sensors, and LEDs.We share teachers’emergent practices in transforming their classrooms into makerspaces, including valuing student expertise and promoting connections in personalized work. We discuss the ways these practices succeeded in broadening access to making while deepening participation in computing and establishing home-school connections. 
    more » « less
  5. Background/Context:

    Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field.

    Purpose/Focus of Study:

    This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-school program, first as students and then as cofacilitators teaching CPM practices to other middle school peers.

    Setting:

    An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1.

    Research Design:

    This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices.

    Findings:

    Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with.

    Conclusions/Recommendations:

    Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.

     
    more » « less