skip to main content

Title: CPB-3 and CGH-1 localize to motile particles within dendrites in C. elegans PVD sensory neurons
Abstract Objective

RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development inDrosophiladendritic arborization neurons andCaenorhabditis elegans(C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb inDrosophilaand CPB-3 inC. elegans, and the DEAD box RNA helicases, Me31B inDrosophilaand CGH-1 inC. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons.


Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Research Notes
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in 3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions, and impart translational control. Thousands of mRNAs are localized to subcellular compartments in neurons—including axons, dendrites, and synapses—where they are thought to undergo local translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in neurons, the specific RNA sequences and structural features at play remain poorly understood. The nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA). The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing. Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological disorders—more studies are needed to uncover how these mutations impact gene regulation and what is their relationship to disease severity. 
    more » « less
  2. Abstract

    Visualization of gene products inCaenorhabditis eleganshas provided insights into the molecular and biological functions of many novel genes in their native contexts. Single‐molecule fluorescencein situhybridization (smFISH) and immunofluorescence (IF) enable the visualization of the abundance and localization of mRNAs and proteins, respectively, allowing researchers to ultimately elucidate the localization, dynamics, and functions of the corresponding genes. Whereas both smFISH and immunofluorescence have been foundational techniques in molecular biology, each protocol poses challenges for use in theC. elegansembryo. smFISH protocols suffer from high initial costs and can photobleach rapidly, and immunofluorescence requires technically challenging permeabilization steps and slide preparation. Most importantly, published smFISH and IF protocols have predominantly been mutually exclusive, preventing the exploration of relationships between an mRNA and a relevant protein in the same sample. Here, we describe protocols to perform immunofluorescence and smFISH inC. elegansembryos either in sequence or simultaneously. We also outline the steps to perform smFISH or immunofluorescence alone, including several improvements and optimizations to existing approaches. These protocols feature improved fixation and permeabilization steps to preserve cellular morphology while maintaining probe and antibody accessibility in the embryo, a streamlined, in‐tube approach for antibody staining that negates freeze‐cracking, a validated method to perform the cost‐reducing single molecule inexpensive FISH (smiFISH) adaptation, slide preparation using empirically determined optimal antifade products, and straightforward quantification and data analysis methods. Finally, we discuss tricks and tips to help the reader optimize and troubleshoot individual steps in each protocol. Together, these protocols simplify existing workflows for single‐molecule RNA and protein detection. Moreover, simultaneous, high‐resolution imaging of proteins and RNAs of interest will permit analysis, quantification, and comparison of protein and RNA distributions, furthering our understanding of the relationship between RNAs and their protein products or cellular markers in early development. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Sequential immunofluorescence and single‐molecule fluorescencein situhybridization

    Alternate Protocol: Abbreviated protocol for simultaneous immunofluorescence and single‐molecule fluorescencein situhybridization

    Basic Protocol 2: Simplified immunofluorescence inC. elegansembryos

    Basic Protocol 3: Single‐molecule fluorescencein situhybridization or single‐molecule inexpensive fluorescencein situhybridization

    more » « less
  3. Summary

    A key aspect of development in all metazoans is remodeling at the cellular level. During the development of gametes, remodeling occurs throughout the germ line. WhenCaenorhabditis eleganshermaphrodites become depleted of sperm after 4 days of adulthood, significant cellular remodeling occurs within the meiotically‐arrested oocytes, including the formation of ribonucleoprotein granules. Since major remodeling of the endoplasmic reticulum (ER) occurs in early embryos, we investigated the extent of ER remodeling in meiotically‐arrested oocytes. We found, using a combination of fluorescence reporters and transmission electron microscopy, that the ER in arrested oocytes accumulates in patches and sheets that are enriched at the cortex. Our findings suggest this remodeling is not due to simple displacement by large amounts of yolk that accumulate in arrested oocytes, and instead may be genetically regulated. We further identified the Ddx6 RNA helicase, CGH‐1, as a key regulator of ER in the germ line. Incgh‐1(tn691)oocytes, we detected cortical ER patches as well as aberrant granules of the RNA‐binding proteins, PAB‐1, MEX‐3, and CGH‐1. Taken together, our results suggest the possibility that the spatial organization of RNA binding proteins may regulate the translation of mRNAs associated with the ER that in turn, controls the organization of the ER in the adult germ line.

    more » « less
  4. Abstract Background

    In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking.


    Here, by analyzingadr-1andadr-2null mutants in well-established slow-killing assays, we find that bothCaenorhabditis elegansADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicateadr-1;adr-2mutant animals also have altered cuticle morphology prior to pathogen exposure.


    Our data uncover a critical role of theC. elegansADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.

    more » « less
  5. null (Ed.)
    The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 “core” mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway—evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1 . We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response. 
    more » « less