skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Case Study of Undergraduate and Graduate Student Research in STEM Education
Student research in STEM education is an important learning component for both undergraduate and graduate students. It is not sufficient for students to learn passively in lecture-based classrooms without engaging and immersing themselves in the educational process through real-world research learning. Experiential learning for STEM students can involve conducting research, alongside and through the guidance of their professors, early in a student’s undergraduate or graduate program. The authors consider such experiences to be the hallmark of a high-quality STEM education and something every student, undergraduate and graduate, should have during the course of their programs. The purpose of this case study is to document the faculty authors’ experiences in student-faculty research and provide guidance and recommendations for best practices based upon the authors’ experience, data, and literature findings. Moreover, the study presents the experience of the faculty authors’ international student researchers in STEM with focus on two student researchers, one undergraduate and one graduate, who are international STEM. The students served as co-authors on this project. Findings from this case study indicate that students were highly engaged in the research process and found these skills valuable preparation for further study and career. Moreover, the students expressed enthusiasm and engagement for the research process.  more » « less
Award ID(s):
1839656
PAR ID:
10287138
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Curriculum and Teaching
Volume:
10
Issue:
1
ISSN:
1927-2677
Page Range / eLocation ID:
29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To pursue transdisciplinary education, bringing together different disciplinary perspectives is necessary. As two graduate researchers, in engineering technology and anthropology, on a National Science Foundation (NSF) Improving Undergraduate STEM Education research project, we want to embody and explore our role in the journey to pursue transdisciplinary education. Our familiarity with higher education as students, our different disciplinary backgrounds and lived experiences, and our training as an engineering technology educator and a social scientist contribute greatly to the advancement of understanding the project. Harnessing our combined expertise enables us to see collaborative co-teaching, group learning, and student engagement in new ways. Often transdisciplinary education research is approached from siloed disciplines or from a single perspective and not inclusive of graduate students' perspectives. We find ourselves working on a collaborative cross-college project between three different colleges, Business, Engineering Technology, and Liberal Arts, where faculty and students are co-teaching and co-learning in a series of design and innovation courses. A key element of this project is gathering and using stakeholder data from students, faculty, and administrators. Midway through our three-year project, the NSF project’s external reviewer highlighted the crucial value added of having graduate researchers looking at transforming higher education towards transdisciplinarity. With that in mind, we offer some guiding thoughts about collaborative research among graduate students and faculty from different academic disciplines. This includes tips on how we collaborated in coding, analysis, and data presentations. Using project examples, we will discuss how we used tools for collaboration such as NVivo Teams and Microsoft Teams; these platforms aided in contributing to the iterative research design of this project and research outputs. Our process was strengthened by active participation in project meetings with faculty, educational community events, and data review sessions to reach data consensus. We have noticed how transdisciplinarity can transform undergraduate learning and encourage cross-college faculty collaboration. We will reflect on the significance of collaboration at all levels of higher education. Furthermore, this experience has set us on the path to becoming transdisciplinary scholars ourselves. 
    more » « less
  2. Undergraduate research is well recognized as an effective high-impact educational practice associated with student success in higher education. Actively engaging students in research experiences is considered as one of the several high-impact practices by many agencies including the American Chemical Society. Developing and maintaining an active undergraduate research program benefits both the faculty and students especially those from under-represented minority groups (URM). The infusion of research experiences into undergraduate curriculum enables students from all backgrounds to develop independent critical thinking skills, written and oral communications skills that are very important for successful careers in “STEM” area. Several strategies and activities such as a Peer Mentoring Program (PMP), funded research activities, the infusion of research into organic chemistry labs, undergraduate professional development, research group meetings, presentations at regional/national conferences, and publishing as co-authors on peer-review papers are vital in creating a welcoming research group that promotes the diversity, equity, and inclusion in organic chemistry education. The experiences working on funded research projects, presenting their research data at conferences and publishing papers as co-authors will greatly increase the under-represented minority (URM) students’ chance in landing a job or getting admitted into graduate/professional programs in STEM area. 
    more » « less
  3. ackground: Historically Black College and Universities (HBCUs) have for decades played a pivotal role in producing Black scientists. Research found that HBCUs, despite being under funded and resourced, were responsible for over 10% of Black scientists with doctorates. Even though most earn their doctorates at Historically White Institutions (HWIS), understanding the experience of Black STEM doctoral students at HBCUs is of paramount importance to impacting opportunity for success for underrepresented population groups. HBCUs are recognized for approaches to learning and learning environments that are more relational, encouraging peer to peer and student to faculty relationships, particularly in the form of same-race and same sex mentorships, resulting in less negative racialized gendered experiences and less competitive atmospheres. In spite of what appears to be accepted truths, such as HBCUs offering more culturally affirming experiences, some researchers suggests that little empirical research exists on the quality of support structures available for graduate students at HBCUS in STEM academic fields, particularly mentoring. Increased understanding would provide essential framing necessary for developing more effective mentors at HBCUs, especially given that there are limited numbers of Black faculty in STEM, even at HBCUs. Theoretical Framework: Anti-racism and critical capital theory are employed as theoretical frameworks. Both are well suited for questioning taken-for-granted assumptions about the lived experiences of racialized others and for deconstructing systemic issues influencing common faculty practices. These frameworks highlight the contextual experiences of STEM doctoral learning. Research Design: The researchers were interested in understanding how STEM doctoral faculty at HBCUs perceive their role as mentors. An NSF AGEP sponsored social science research project explored the dispositions, skills, and knowledge of eight STEM faculty at a HBCU. Attitudes towards culturally liberative mentoring were explored through a qualitative case study. The participating faculty were involved in an institutional change program and were interviewed for an average of 60 minutes. Constant comparative data analysis method was used. Additionally, STEM faculty from participating departments completed two mentoring competency and attitude inventories. This case was drawn from a larger multiple embedded case study. Research Findings: The research findings indicate that STEM doctoral faculty mentors at HBCUs express attitudes about mentoring that are not all that different from their PWIS counterparts. They have a tendency to hold deficit views of domestic Black students and have minimal awareness of how culture inhibits or facilitates a positive learning experience for Black students. Further the culture of science tended to blind them from the culture of people. Research Implications: In order to enhance the learning experiences of Black STEM doctoral students at HBCUs, the Black student experience at HBCUs must be deromanticized. Understanding the impact of anti-Black racism even within an environment historically and predominantly Black is imperative. Recognizing the ways in which anti-Black attitudes are insidiously present in faculty attitudes and practices and in environments perceived as friendly and supportive for Black students highlights opportunities for STEM faculty development that can move toward a more culturally liberative framework. 
    more » « less
  4. A significant problem facing higher education institutions is the inability to incorporate professional development training in the curriculum. Many pedagogical strategies have been developed in the last two decades to address this academic deficiency. Course-based undergraduate research experiences (CUREs) are an evidence - based approach with positive student outcomes. CUREs permit many science, technology, engineering, and mathematics (STEM) undergraduate students to participate in the scientific process and thus prepare students for the rigors of future graduate and professional school programs and careers. CUREs are a pedagogical and training method suitable for STEM departments of all sizes. They can accommodate smaller institutions that may have restrictive budgets and financial resources to offer authentic, faculty - mentored research experiences to most STEM matriculants. The animal microbiome and phytomicrobiome represent the total collection of microbes in animals and plants, respectively. Exploring microbial diversity and the functional attributes of microbes and microbial products in animals and plants presents an immeasurable number of CUREs student projects that can be developed. The conflation of CUREs and the field of microbiomics is a potentially beneficial marriage with advantageous results. Future educational research exploring the effects of animal microbiome and phytomicrobiome CUREs projects on student outcomes and other factors will assist educational researchers and STEM faculty. 
    more » « less
  5. Understanding the experiences of successful diverse science, technology, engineering, and math (STEM) faculty can facilitate the development of programming that counteracts barriers and weaknesses from multiple angles. The challenges that students and professionals report can be broadly identified as either identity-based or institutional. The lack of diversity in STEM fields in academia can result in narrow viewpoints, limited student diversity, and missed opportunities to address today’s societal challenges. It is clear that we must consider programming that has positively impacted successful STEM faculty in academia in order to create effective programming to recruit and retain future diverse STEM faculty. Our phenomenological study sought to add to the literature related to the role that socialization plays in preparing individuals for success in faculty roles by conducting in-depth interviews with early-career STEM faculty members in under-represented groups. The phenomena under investigation were experiences leading to early-career STEM faculty members’ successful career pathways. Seven early-career STEM faculty from multiple institutions described unique paths to their current faculty position with some commonalities, including participation in undergraduate or postdoc research and having some industry experience. The suggestions, advice, and guidance offered by the participants fell into categories that, while mirrored in the literature, serve as useful markers for administrators developing programming. We organized our findings using the conceptual framework of socialization and the associated competencies for our context. As we strive to encourage and build diverse representation in populations of STEM academicians, these collective findings are invaluable. Findings confirm that programming directly impacts the success of early-career STEM faculty, and it is the success of these individuals that will enable diversity and inclusion to expand in STEM. Programs, interventions, and additional efforts for graduate students can also benefit from close examination of these experiences. 
    more » « less