skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Way it Makes you Feel Predicting Users’ Engagement during Interviews with Biofeedback and Supervised Learning
Capturing users' engagement is crucial for gathering feedback about the features of a software product. In a market-driven context, current approaches to collect and analyze users' feedback are based on techniques leveraging information extracted from product reviews and social media. These approaches are hardly applicable in bespoke software development, or in contexts in which one needs to gather information from specific users. In such cases, companies need to resort to face-to-face interviews to get feedback on their products. In this paper, we propose to utilize biofeedback to complement interviews with information about the engagement of the user on the discussed features and topics. We evaluate our approach by interviewing users while gathering their biometric data using an Empatica E4 wristband. Our results show that we can predict users' engagement by training supervised machine learning algorithms on the biometric data. The results of our work can be used to facilitate the prioritization of product features and to guide the interview based on users' engagement.  more » « less
Award ID(s):
1718377
PAR ID:
10287191
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE 28th International Requirements Engineering Conference (RE)
Page Range / eLocation ID:
32 to 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The objective of this study is to investigate students’ decision-making during the information gathering activities of a design process. Existing literature in engineering education has shown that students face difficulties while gathering information in various activities of a design process such as brainstorming and CAD modeling. Decision-making is an important aspect of these activities. While gathering information, students make several decisions such as what information to acquire and how to acquire that information. There lies a research gap in understanding how students make decisions while gathering information in a product design process. To address this gap, we conduct semi-structured interviews and surveys in a product design course. We analyze the students’ decision-making activities from the lens of a sequential information acquisition and decision-making (SIADM) framework. We find that the students recognize the need to acquire information about the physics and dynamics of their design artifact during the CAD modeling activity of the product design process. However, they do not acquire such information from their CAD models primarily due to the lack of the project requirements, their ability, and the time to do so. Instead, they acquire such information from the prototyping activity as their physical prototype does not satisfy their design objectives. However, the students do not get the opportunity to iterate their prototype with the given cost and time constraints. Consequently, they rely on improvising during prototyping. Based on our observations, we discuss the need for designing course project activities such that it facilitates students’ product design decisions. 
    more » « less
  2. Abstract: Health data is considered to be sensitive and personal; both governments and software platforms have enacted specific measures to protect it. Consumer apps that collect health data are becoming more popular, but raise new privacy concerns as they collect unnecessary data, share it with third parties, and track users. However, developers of these apps are not necessarily knowingly endangering users’ privacy; some may simply face challenges working with health features. To scope these challenges, we qualitatively analyzed 269 privacy-related posts on Stack Overflow by developers of health apps for Android- and iOS-based systems. We found that health-specific access control structures (e.g., enhanced requirements for permissions and authentication) underlie several privacy-related challenges developers face. The specific nature of problems often differed between the platforms, for example additional verification steps for Android developers, or confusing feedback about incorrectly formulated permission scopes for iOS. Developers also face problems introduced by third-party libraries. Official documentation plays a key part in understanding privacy requirements, but in some cases, may itself cause confusion. We discuss implications of our findings and propose ways to improve developers’ experience of working with health-related features -- and consequently to improve the privacy of their apps’ end users. 
    more » « less
  3. APIs are becoming the fundamental building block of modern software and their usability is crucial to programming efficiency and software quality. Yet API designers find it hard to gather and interpret user feedback on their APIs. To close the gap, we interviewed 23 API designers from 6 companies and 11 open-source projects to understand their practices and needs. The primary way of gathering user feedback is through bug reports and peer reviews, as formal usability testing is prohibitively expensive to conduct in practice. Participants expressed a strong desire to gather real-world use cases and understand users' mental models, but there was a lack of tool support for such needs. In particular, participants were curious about where users got stuck, their workarounds, common mistakes, and unanticipated corner cases. We highlight several opportunities to address those unmet needs, including developing new mechanisms that systematically elicit users' mental models, building mining frameworks that identify recurring patterns beyond shallow statistics about API usage, and exploring alternative design choices made in similar libraries. 
    more » « less
  4. Intelligent assistants change the way for people to interact with computers and make it possible for people to search for products through conversations when they have purchase needs. During the interactions, the system could ask questions on certain aspects of the ideal products to clarify the users' needs. Previous work proposed to ask users the exact characteristics of their ideal items before showing results. However, users may not have clear ideas about what an ideal item should be like, especially when they have not seen any items. So it is more feasible to facilitate the conversational search by showing example items and asking for feedback instead. In addition, when the users provide negative feedback for the presented items, it is easier to collect their detailed feedback on certain properties (aspect-value pairs) of the non-relevant items. By breaking down the item-level negative feedback to fine-grained feedback on aspect-value pairs, more information is available to help clarify users' intents. So in this paper, we propose a conversational paradigm for product search driven by non-relevant items, based on which fine-grained feedback is collected and utilized to show better results in the next iteration. We then propose an aspect-value likelihood model to incorporate both positive and negative feedback on fine-grained aspect-value pairs of the non-relevant items. Experimental results show that our model is significantly better than state-of-art product search baselines without using feedback and baselines using item-level negative feedback. 
    more » « less
  5. Robles, A. (Ed.)
    Although various navigation apps are available, people who are blind or have low vision (PVIB) still face challenges to locate store entrances due to missing geospatial information in existing map services. Previously, we have developed a crowdsourcing platform to collect storefront accessibility and localization data to address the above challenges. In this paper, we have significantly improved the efficiency of data collection and user engagement in our new AI-enabled Smart DoorFront platform by designing and developing multiple important features, including a gamified credit ranking system, a volunteer contribution estimator, an AI-based pre-labeling function, and an image gallery feature. For achieving these, we integrate a specially designed deep learning model called MultiCLU into the Smart DoorFront. We also introduce an online machine learning mechanism to iteratively train the MultiCLU model, by using newly labeled storefront accessibility objects and their locations in images. Our new DoorFront platform not only significantly improves the efficiency of storefront accessibility data collection, but optimizes user experience. We have conducted interviews with six adults who are blind to better understand their daily travel challenges and their feedback indicated that the storefront accessibility data collected via the DoorFront platform would be very beneficial for them. 
    more » « less