Abstract We constrain the distribution of spatially offset Lyman-alpha emission (Ly α) relative to rest-frame ultraviolet emission in ∼300 high redshift (3 < z < 5.5) Lyman-break galaxies (LBGs) exhibiting Ly α emission from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (≃0.2 deg2 total). Because slit spectroscopy only provides one spatial dimension, we use Bayesian inference to recover the underlying two-dimensional Ly α spatial offset distribution. We model the distribution using a two-dimensional circular Gaussian, defined by a single parameter σr,Ly α, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample (3 < z < 5.5), we find $$\sigma _{r,\mathrm{Ly}\,\alpha }=1.70^{+0.09}_{-0.08}$$ kpc ($$68\hbox{ per cent}$$ conf.), corresponding to ∼0$${^{\prime\prime}_{.}}$$25 at 〈z〉 = 4.5. We also find that σr,Ly α decreases significantly with redshift. Because Ly α spatial offsets can cause slit losses, the decrease in σr,Ly α with redshift can partially explain the increase in the fraction of Ly α emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If σr,Ly α continues to decrease into the reionization epoch, then the decrease in Ly α transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the intergalactic medium, slit losses may explain some of the drop in Ly α transmission observed at z > 6. Spatially resolved observations of Ly α and UV continuum at 6 < z < 8 are needed to settle the issue.
more »
« less
The size and pervasiveness of Ly α–UV spatial offsets in star-forming galaxies at z ∼ 6
ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$), we find a relatively modest average projected offset of $$|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$$ = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$$) showed offsets a factor of three greater than their fainter counterparts ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations.
more »
« less
- PAR ID:
- 10287414
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 504
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3662 to 3681
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $$\rm Ly\alpha$$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $$\rm Ly\alpha$$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $$\rm Ly\alpha$$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $$\rm Ly\alpha$$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $$\rm Ly\alpha$$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $$\rm Ly\alpha$$ emission. The symmetry implies that the $$\rm Ly\alpha$$ scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $$\rm Ly\alpha$$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $$\rm Ly\alpha$$ emission. We speculate that this weak directional dependence of $$\rm Ly\alpha$$ emission becomes discernible only when the $$\rm Ly\alpha$$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $$\rm Ly\alpha$$ radiative transfer modelling.more » « less
-
null (Ed.)ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $$\rm{H\,{\small I}}$$\rm Ly\,\alpha$$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $$\rm{H\,{\small I}}$$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $$\rm{H\,{\small I}}$$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$$^{-1}\,$$ dominate the kinematics of circumgalactic $$\rm{H\,{\small I}}$$ out to Dtran ≃ 50 kpc, while $$\rm{H\,{\small I}}$$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $$\rm{H\,{\small I}}$$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $$\rm Ly\,\alpha$$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion.more » « less
-
ABSTRACT We measure the Lyman continuum (LyC) escape fraction in 54 faint Lyman-alpha emitters (LAEs) at $$z$$ ≃ 3.1 in the GOODS-South field. With the average magnitude of R = 26.7 AB (MUV = −18.8 and L ≃ 0.1L*), these galaxies represent a population of compact young dwarf galaxies. Their properties are likely to resemble those in the galaxies responsible for reionizing the Universe at $$z$$ > 6. We do not detect LyC emission in any individual LAEs in the deep HST F336W images, which covers the rest-frame 820 Å. We do not detect the LyC emission of these LAEs in the stacked F336W images either. The 3σ upper limit of LyC escape fractions is $$f_{\rm esc}\lt 14\!-\!32{{\ \rm per\ cent}}$$. However, the high Ly α rest-frame equivalent width (EW), low stellar mass, and UV luminosity of these LAEs suggest that they should have $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$. The low LyC escape fraction from this work and other stacking analyses suggests that the LyC-leaking galaxies with $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$ at $$z$$ = 2–3 do not follow the relation between fesc and UV luminosity and Ly α EW derived from typical galaxies at similar redshifts. Therefore, the UV luminosity and Ly α EW are not the best indicators for the LyC escape fraction.more » « less
-
ABSTRACT Recent work has shown that UV-luminous reionization-era galaxies often exhibit strong Lyman-alpha emission despite being situated at redshifts where the IGM is thought to be substantially neutral. It has been argued that this enhanced Ly α transmission reflects the presence of massive galaxies in overdense regions which power large ionized bubbles. An alternative explanation is that massive galaxies shift more of their Ly α profile to large velocities (relative to the systemic redshift) where the IGM damping wing absorption is reduced. Such a mass-dependent trend is seen at lower redshifts, but whether one exists at z ∼ 7 remains unclear owing to the small number of existing systemic redshift measurements in the reionization era. This is now changing with the emergence of [C ii]-based redshifts from ALMA. Here, we report MMT/Binospec Ly α spectroscopy of eight UV-bright (MUV ∼ −22) galaxies at z ≃ 7 selected from the ALMA REBELS survey. We detect Ly α in four of eight galaxies and use the [C ii] systemic redshifts to investigate the Ly α velocity profiles. The Ly α lines are significantly redshifted from systemic (average velocity offset = 223 km s–1) and broad (FWHM ≈ 300–650 km s−1), with two sources showing emission extending to ≈750 km s−1. We find that the broadest Ly α profiles are associated with the largest [C ii] line widths, suggesting a potential link between the Ly α FWHM and the dynamical mass. Since Ly α photons at high velocities transmit efficiently through the z = 7 IGM, our data suggest that velocity profiles play a significant role in boosting the Ly α visibility of the most UV-luminous reionization-era galaxies.more » « less
An official website of the United States government

