skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial Neuronal Networks for Empowering Radio Transceivers: Opportunities and Challenges
With the advances in wireless communications towards beyond 5G (B5G) and 6G networks, new signal processing and resource management methods need to be explored to overcome the channel impairments and other radio and computing obstacles. In contrast to the conventional methods which are based on classic digital communications structures, B5G and 6G will leverage artificial intelligence (AI) to configure or adapt the radios and networks to the operational context. This requires the ability to reformulate legacy transceiver structures and drive research, development and standardization that can leverage the amount of data that is available and that can be processed with the available computing technology. This paper describes this vision and discusses successful research that justifies it as well as the remaining challenges. We numerically analyze some of the tradeoffs when replacing the physical layer receiver processing with an artificial neural network (ANN).  more » « less
Award ID(s):
2016724
PAR ID:
10287631
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Vehicular Technology Conference, Fall 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the proliferation of Beyond 5G (B5G) communication systems and heterogeneous networks, mobile broadband users are generating massive volumes of data that undergo fast processing and computing to obtain actionable insights. While analyzing this huge amount of data typically involves machine and deep learning-based data-driven Artificial Intelligence (AI) models, a key challenge arises in terms of providing privacy assurances for user-generated data. Even though data-driven techniques have been widely utilized for network traffic analysis and other network management tasks, researchers have also identified that applying AI techniques may often lead to severe privacy concerns. Therefore, the concept of privacy-preserving data-driven learning models has recently emerged as a hot area of research to facilitate model training on large-scale datasets while guaranteeing privacy along with the security of the data. In this paper, we first demonstrate the research gap in this domain, followed by a tutorial-oriented review of data-driven models, which can be potentially mapped to privacy-preserving techniques. Then, we provide preliminaries of a number of privacy-preserving techniques (e.g., differential privacy, functional encryption, Homomorphic encryption, secure multi-party computation, and federated learning) that can be potentially adopted for emerging communication networks. The provided preliminaries enable us to showcase the subset of data-driven privacy-preserving models, which are gaining traction in emerging communication network systems. We provide a number of relevant networking use cases, ranging from the B5G core and Radio Access Networks (RANs) to semantic communications, adopting privacy-preserving data-driven models. Based on the lessons learned from the pertinent use cases, we also identify several open research challenges and hint toward possible solutions. 
    more » « less
  2. Multiple visions of 6G networks elicit Artificial Intelligence (AI) as a central, native element. When 6G systems are deployed at a large scale, end-to-end AI-based solutions will necessarily have to encompass both the radio and the fiberoptical domain. This paper introduces the Decentralized Multi- Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale. DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves. This is particularly crucial at the network edge, where advanced applications meet heightened functionality and security demands. The radio/optical integration is vital due to the current compartmentalization of AI research within these domains, which lacks a comprehensive understanding of their interaction. Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks. The DMMAI framework is a step towards a global standard for AI in 6G, aiming to establish reference use cases, data and model management methods, and benchmarking platforms for future AI/ML solutions. 
    more » « less
  3. Abstract Artificial neuronal devices are critical building blocks of neuromorphic computing systems and currently the subject of intense research motivated by application needs from new computing technology and more realistic brain emulation. Researchers have proposed a range of device concepts that can mimic neuronal dynamics and functions. Although the switching physics and device structures of these artificial neurons are largely different, their behaviors can be described by several neuron models in a more unified manner. In this paper, the reports of artificial neuronal devices based on emerging volatile switching materials are reviewed from the perspective of the demonstrated neuron models, with a focus on the neuronal functions implemented in these devices and the exploitation of these functions for computational and sensing applications. Furthermore, the neuroscience inspirations and engineering methods to enrich the neuronal dynamics that remain to be implemented in artificial neuronal devices and networks toward realizing the full functionalities of biological neurons are discussed. 
    more » « less
  4. The emerging Sixth Generation (6G) communication networks promising 100 to 1000 Gb/s rates and ultra-low latency (1 millisecond) are anticipated to have native, embedded Artificial Intelligence (AI) capability to support a myriad of services, such as Holographic Type Communications (HTC), tactile Internet, remote surgery, etc. However, these services require ultra-reliability, which is highly impacted by the dynamically changing environment of 6G heterogeneous tiny cells, whereby static AI solutions fitting all scenarios and devices are impractical. Hence, this article introduces a novel concept called the softwarization of intelligence in 6G networks to select the most ideal, ultra-fast optimal policy based on the highly varying channel conditions, traffic demand, user mobility, and so forth. Our envisioned concept is exemplified in a Multi-Armed Bandit (MAB) framework and evaluated within a use case of two simultaneous scenarios (i.e., Neighbor Discovery and Selection (NDS) in a Device-to-Device (D2D) network and aerial gateway selection in an Unmanned Aerial Vehicle (UAV)-based under-served area network). Furthermore, our concept is evaluated through extensive computer-based simulations that indicate encouraging performance. Finally, related challenges and future directions are highlighted. 
    more » « less
  5. With the commercialization and deployment of 5G, efforts are beginning to explore the design of the next generation of cellular networks, called 6G. New and constantly evolving use cases continue to place performance demands, especially for low latency communications, as these are still challenges for the 3GPP-specified 5G design, and will have to be met by the 6G design. Therefore, it is helpful to re-examine several aspects of the current cellular network’s design and implementation.Based on our understanding of the 5G cellular network specifications, we explore different implementation options for a dis-aggregated 5G core and their performance implications. To improve the data plane performance, we consider advanced packet classification mechanisms to support fast packet processing in the User Plane Function (UPF), to improve the poor performance and scalability of the current design based on linked lists. Importantly, we implement the UPF function on a SmartNIC for forwarding and tunneling. The SmartNIC provides the fastpath for device traffic, while more complex functions of buffering and processing flows that suffer a miss on the SmartNIC P4 tables are processed by the host-based UPF. Compared to an efficient DPDK-based host UPF, the SmartNIC UPF increases the throughput for 64 Byte packets by almost 2×. Furthermore, we lower the packet forwarding latency by 3.75× by using the SmartNIC. In addition, we propose a novel context-level QoS mechanism that dynamically updates the Packet Detection Rule priority and resource allocation of a flow based on the user context. By combining our innovations, we can achieve low latency and high throughput that will help us evolve to the next generation 6G cellular networks. 
    more » « less