skip to main content

Title: Axisymmetric membranes with edges under external force: buckling, minimal surfaces, and tethers
We use theory and numerical computation to determine the shape of an axisymmetric fluid membrane with a resistance to bending and constant area. The membrane connects two rings in the classic geometry that produces a catenoidal shape in a soap film. In our problem, we find infinitely many branches of solutions for the shape and external force as functions of the separation of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable separation when the area is less than a critical area equal to the planar area enclosed by the two rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the stability of catenoidal soap films in this regime. When the membrane area is larger than the critical area, we find additional cylindrical tether solutions to the shape equations at large ring separation, and that arbitrarily large ring separations are possible. These results apply for the case of vanishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the area is below the critical area, the force and the membrane tension more » diverge as the ring separation approaches its maximum value. We also examine the stability of our shapes and analytically show that catenoidal membranes have markedly different stability properties than their soap film counterparts. « less
Authors:
; ; ;
Award ID(s):
2020098
Publication Date:
NSF-PAR ID:
10287703
Journal Name:
Soft Matter
Volume:
17
Issue:
31
Page Range or eLocation-ID:
7268 to 7286
ISSN:
1744-683X
Sponsoring Org:
National Science Foundation
More Like this
  1. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsivemore »force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes.« less
  2. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsivemore »force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes.« less
  3. During closed mitosis in fission yeast, growing microtubules push onto the nuclear envelope to deform it, which results in fission into two daughter nuclei. The resistance of the envelope to bending, quantified by the flexural stiffness, helps determine the microtubule-dependent nuclear shape transformations. Computational models of envelope mechanics have assumed values of the flexural stiffness of the envelope based on simple scaling arguments. The validity of these estimates is in doubt, however, owing to the complex structure of the nuclear envelope. Here, we performed computational analysis of the bending of the nuclear envelope under applied force using a model thatmore »accounts for envelope geometry. Our calculations show that the effective bending modulus of the nuclear envelope is an order of magnitude larger than a single membrane and approximately five times greater than the nuclear lamina. This large bending modulus is in part due to the 45 nm separation between the two membranes, which supports larger bending moments in the structure. Further, the effective bending modulus is highly sensitive to the geometry of the nuclear envelope, ranging from twofold to an order magnitude larger than the corresponding single membrane. These results suggest that spatial variations in geometry and mechanical environment of the envelope may cause a spatial distribution of flexural stiffness in the same nucleus. Overall, our calculations support the possibility that the nuclear envelope may balance significant mechanical stresses in yeast and in cells from higher organisms.« less
  4. The Marangoni propulsion of spheres and elliptical disks floating on the air–water interface were studied to understand the effect of particle shape on its motion and its stability at moderate Reynolds numbers. Self-propulsion of the Marangoni surfer was achieved by coating half of the spheres and the elliptical disks with either a solution of soap or isopropyl alcohol (IPA). The presence of the soap or IPA resulted in a surface tension gradient across the particles which propelled the particles in the direction of increasing surface tension. Beyond a critical velocity, a transition was observed from a straight-line motion to amore »rotational motion. These vortices were observed to shed above a critical Reynolds number resulting in an unbalanced torque that caused the particles to rotate. Increasing the aspect ratio between the major and minor axes of the elliptical disks was found to decrease their stability and greatly enhance their rate of rotation. This was especially true for elliptical disks traveling in a direction parallel to their major axis. The interactions between the particles and the wall of a Petri dish were also studied. Repulsive, concave curvature was found to decrease stability and enhance rotational motion, while attractive, convex curvature was shown to stabilize the straight-line motion of the spheres. For the neutrally buoyant elliptical disks, the presence of the bounding wall was found to greatly stabilize the straight-line motion of the elliptical disks when they were traveling in a direction parallel to their minor axis.« less
  5. Bile salts, especially in their aggregated or micellar form, play a critical role in health and medicine by solubilizing cholesterol, fat-soluble vitamins, and drugs. However, in contrast to the head–tail (HT) surfactants like sodium dodecyl sulfate (SDS), amphiphilic bile salts have an unusual steroid structure and exhibit a smaller aggregation number ( N agg < 20 molecules per micelle vs. N agg > 50 for SDS). Foam films formed by micellar solutions of typical surfactants like SDS exhibit stratification manifested as stepwise thinning and coexistence of flat thick–thin regions that differ by a step-size proportional to the intermicellar distance. Wemore »consider drainage via stratification studies as an effective and insightful probe of the strength and magnitude of intermicellar interactions and resulting supramolecular oscillatory structural (SOS) surface force contribution to disjoining pressure. However, there are neither prior reports of stratification in foam films formed with bile salt solutions nor measurements of SOS surface forces. Here we report the discovery and characterization of stratification in foam films formed by aqueous solutions of four bile salts – sodium cholate (NaC), sodium taurocholate (NaTC), sodium deoxycholate (NaDC), and sodium glycodeoxycholate (NaGDC) – that have a similar steroid nucleus, but difference in conjugation sites and the number of hydroxyl groups (3 for NaC and NaTC, 2 for NaDC and NaGC). Using IDIOM (interferometry digital imaging optical microscopy) protocols we developed recently to characterize and analyze thickness variations and transitions, we find that foam films made with bile salts exhibit fewer stepwise transitions and smaller step-size than SDS solutions. Also, we measured a lower drop in surface tension and lower magnitude of thickness-dependent disjoining pressure compared to SDS solutions. We find that the bile salts with a matched number of hydroxyl groups exhibit similar properties in tensiometry and foam film studies. We show that the stratification studies can characterize the influence of chemical structure on the magnitude and range of intermicellar interactions as well their influence on drainage and stability of foam films.« less