skip to main content


Title: Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors---learning rate, batch size, gradient covariance, and Hessian---to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems.  more » « less
Award ID(s):
1913149 1707605
NSF-PAR ID:
10287985
Author(s) / Creator(s):
;
Editor(s):
Bach, Francis; Blei, David; Scholkopf, Bernhard
Date Published:
Journal Name:
Journal of machine learning research
Volume:
21
ISSN:
1532-4435
Page Range / eLocation ID:
1-103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bach, Francis ; Blei, David ; Scholkopf, Bernhard (Ed.)
    This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors—learning rate, batch size, gradient covariance, and Hessian—to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems. 
    more » « less
  2. null (Ed.)
    We undertake a precise study of the asymptotic and non-asymptotic properties of stochastic approximation procedures with Polyak-Ruppert averaging for solving a linear system $\bar{A} \theta = \bar{b}$. When the matrix $\bar{A}$ is Hurwitz, we prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity. The CLT characterizes the exact asymptotic covariance matrix, which is the sum of the classical Polyak-Ruppert covariance and a correction term that scales with the step size. Under assumptions on the tail of the noise distribution, we prove a non-asymptotic concentration inequality whose main term matches the covariance in CLT in any direction, up to universal constants. When the matrix $\bar{A}$ is not Hurwitz but only has non-negative real parts in its eigenvalues, we prove that the averaged LSA procedure actually achieves an $O(1/T)$ rate in mean-squared error. Our results provide a more refined understanding of linear stochastic approximation in both the asymptotic and non-asymptotic settings. We also show various applications of the main results, including the study of momentum-based stochastic gradient methods as well as temporal difference algorithms in reinforcement learning. 
    more » « less
  3. null (Ed.)
    Gradient descent-based optimization methods underpin the parameter training of neural networks, and hence comprise a significant component in the impressive test results found in a number of applications. Introducing stochasticity is key to their success in practical problems, and there is some understanding of the role of stochastic gradient descent in this context. Momentum modifications of gradient descent such as Polyak’s Heavy Ball method (HB) and Nesterov’s method of accelerated gradients (NAG), are also widely adopted. In this work our focus is on understanding the role of momentum in the training of neural networks, concentrating on the common situation in which the momentum contribution is fixed at each step of the algorithm. To expose the ideas simply we work in the deterministic setting. Our approach is to derive continuous time approximations of the discrete algorithms; these continuous time approximations provide insights into the mechanisms at play within the discrete algorithms. We prove three such approximations. Firstly we show that standard implementations of fixed momentum methods approximate a time-rescaled gradient descent flow, asymptotically as the learning rate shrinks to zero; this result does not distinguish momentum methods from pure gradient descent, in the limit of vanishing learning rate. We then proceed to prove two results aimed at understanding the observed practical advantages of fixed momentum methods over gradient descent, when implemented in the non-asymptotic regime with fixed small, but non-zero, learning rate. We achieve this by proving approximations to continuous time limits in which the small but fixed learning rate appears as a parameter; this is known as the method of modified equations in the numerical analysis literature, recently rediscovered as the high resolution ODE approximation in the machine learning context. In our second result we show that the momentum method is approximated by a continuous time gradient flow, with an additional momentum-dependent second order time-derivative correction, proportional to the learning rate; this may be used to explain the stabilizing effect of momentum algorithms in their transient phase. Furthermore in a third result we show that the momentum methods admit an exponentially attractive invariant manifold on which the dynamics reduces, approximately, to a gradient flow with respect to a modified loss function, equal to the original loss function plus a small perturbation proportional to the learning rate; this small correction provides convexification of the loss function and encodes additional robustness present in momentum methods, beyond the transient phase. 
    more » « less
  4. Datasets containing sensitive information are often sequentially analyzed by many algorithms. This raises a fundamental question in differential privacy regarding how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed f-differential privacy. In contrast to the existing composition theorems using the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks. 
    more » « less
  5. Minimax optimal convergence rates for numerous classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, the behavior of SGDs final iterate has received much less attention despite the widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least quares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations that SGD is run for) is known in advance, the behavior of SGDs final iterate with any polynomially decaying learning rate scheme is highly suboptimal compared to the statistical minimax rate (by a condition number factor in the strongly convex case and a factor of \sqrt{T} in the non-strongly convex case). In contrast, this paper shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offer significant improvements over any polynomially decaying step size schedule. In particular, the behavior of the final iterate with step decay schedules is off from the statistical minimax rate by only log factors (in the condition number for the strongly convex case, and in T in the non-strongly convex case). Finally, in stark contrast to the known horizon case, this paper shows that the anytime (i.e. the limiting) behavior of SGDs final iterate is poor (in that it queries iterates with highly sub-optimal function value infinitely often, i.e. in a limsup sense) irrespective of the step size scheme employed. These results demonstrate the subtlety in establishing optimal learning rate schedules (for the final iterate) for stochastic gradient procedures in fixed time horizon settings. 
    more » « less