skip to main content


Title: Lantern‐Type Divanadium Complexes with Bridging Ligands: Short Metal−Metal Bonds with High Multiple Bond Orders
Abstract

Vanadium forms binuclear complexes with a variety of ligands often containing V≡V triple bonds. Many tetragonal divanadium paddlewheel complexes with bridging bidentate ligands have been experimentally characterized. This research exhaustively treats model tetragonal, trigonal, and digonal paddlewheel‐type divanadium complexes V2Lx(L=formamidinate, guanidinate, and carboxylate;x=2, 3, 4), each in the three lowest‐energy spin states. The V−V formal bond orders are obtained from metal−metal MO diagrams for representative structures. A number of short V−V multiple bonds of order 3, 3.5, and 4 are found in these model complexes. The short V≡V triple bonds and singlet ground state predicted here for the model tetragonal complexes correspond well with the limited experimental results for the series of known tetragonal paddlewheels. Digonal divanadium lanterns with very short V−V quadruple bonds are predicted as interesting synthetic targets. The V−V bond distances are categorized into distinct ranges according to the formal bond order values from 0.5 to 4. These bond length ranges are compared with the ranges compiled for other divanadium complexes including carbonyl complexes.

 
more » « less
NSF-PAR ID:
10288042
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
22
Issue:
19
ISSN:
1439-4235
Page Range / eLocation ID:
p. 2014-2024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many binuclear nickel complexes have NiNi distances suggesting NiNi covalent bonds, including lantern‐type complexes with bridging bidentate ligands. This DFT study treats tetragonal, trigonal, and digonal lantern‐type complexes with the formamidinate, guanidinate, and formate ligands, besides some others. Formal bond orders (ranging from zero to two) are assigned to all the NiNi bonds on the basis of MO occupancy considerations. A VB‐based electron counting approach assigns plausible resonance structures to the dinickel cores. Model tetragonal complexes with the dimethylformamidinate and the dithioformate ligands have singlet ground states whose non‐covalently bonded NiNi distances are close to those in their experimentally known counterparts. Trigonal dinickel complexes are unknown, but are predicted to have quartet ground states with NiNi bonds of order 0.5. The model digonal complexes are predicted to have triplet ground states, but the predicted NiNi bond lengths are longer than those found in their experimentally known counterparts. This could owe to inadequate treatment of electron correlation by DFT in these short NiNi bonds with their multiconfigurational character. All the NiNi bond distances here are categorized into ranges according to the NiNi bond orders of 0, 0.5, 1, 1.5, and 2, no NiNi bonds of order higher than two being identified. The NiNi bonds of given order in these lantern‐type complexes are consistently shorter than the corresponding NiNi bonds in dinickel complexes having carbonyl ligands, attributable to the metalmetal bond lengthening effect of CO ligands.

     
    more » « less
  2. Abstract

    Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.

     
    more » « less
  3. Abstract

    Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.

     
    more » « less
  4. Abstract

    With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions.

     
    more » « less
  5. Abstract

    Binuclear alkyne manganese carbonyls of the type (RC≡CR')Mn2(CO)n(R and R'=methyl or dimethylamino;n=8, 7, 6) and their isomers related to the experimentally known (MeC2NEt2)Mn2(CO)n(n=8, 7) structures have been investigated by density functional theory. The alkyne ligand remains intact in the only low energy (Me2N)2C2Mn2(CO)8isomer, which has a central Mn2C2tetrahedrane unit and is otherwise analogous to the well‐known (alkyne)Co2(CO)6derivatives except for one more CO group per metal atom. The low‐energy structures of the unsaturated (Me2N)2C2Mn2(CO)n(n=7, 6) systems include isomers in which the nitrogen atom of one of the dimethylamino groups as well as the C≡C triple bond of the alkyne is coordinated to the central Mn2unit. In other low‐energy (Me2N)2C2Mn2(CO)n(n=7, 6) isomers the alkyne C≡C triple bond has broken completely to form two separate bridging dimethylaminocarbyne Me2NC ligands analogous to the experimentally known iron carbonyl complex (Et2NC)2Fe2(CO)6. The (alkyne)Mn2(CO)n(n=8, 7, 6) systems of the alkynes MeC≡CMe and Me2NC≡CMe with methyl substituents have significantly more complicated potential surfaces. In these systems the lowest energy isomers have bridging ligands derived from the alkyne in which one or two hydrogen atoms have migrated from a methyl group to one or both of the alkyne carbon atoms. These bridging ligands include allene, manganallyl, and vinylcarbene ligands, the first two of which have been realized experimentally in research by Adams and coworkers. Theoretical studies suggest that the mechanism for the conversion of the simple alkyne octacarbonyl (MeC2NMe2)Mn2(CO)8to the dimethylaminomanganaallyl complex Mn2(CO)7[μ‐η4‐C3H3Me2] involves decarbonylation to the heptacarbonyl and the hexacarbonyl complexes. Subsequent hydrogen migrations then occur through intermediates with C−H−Mn agostic interactions to give the final product. Eight transition states for this mechanistic sequence have been identified with activation energies of ∼20 kcal/mol for the first hydrogen migration and ∼14 kcal/mol for the second hydrogen migration.

     
    more » « less